• Title/Summary/Keyword: multi tubes

Search Result 157, Processing Time 0.03 seconds

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness (기저판의 탄성에 따른 유연촉각센서의 성능변화 연구)

  • Kim, Song Ho;Kim, Ho-Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

Finite Element Analysis for Wall Thinned Steam Generator Tubes (감육된 증기발생기 전열관의 유한요소 해석)

  • Seong, K.Y.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2006
  • Failure assessment of steam generator tube are very important for the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS on steam generator tube with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

  • PDF

Finite Element Analysis of Eddy Current Array Probe for Defect Variation of Steam Generator Tubes in Nuclear Power Plant (원전 증기발생기 세관의 결함 변화에 대한 배열와전류프로브의 유한요소해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.790_791
    • /
    • 2009
  • 본 논문에서는 전자기 유한요소 해석을 통하여 원전 증기 발생기(SG, Steam Generator) 세관의 결함 변화에 따른 배열와전류프로브의 와전류탐상 특성을 해석하였다. 프로브의 전자기적 특성을 위해 맥스웰 방정식을 이용하여 지배방정식을 유도하였고, 이를 3차원 전자기 유한요소법을 이용하여 문제를 해석하였다. 해석을 위한 선정한 결함은 프로브의 특성파악을 위한 표준시험편과 원전 SG세관에 발생 가능한 결함인 Pitting, SCC, Wear, Multi SCC 결함을 선정하였다. 해석 대상으로는 원자력발전소 증기발생기 세관으로 사용되고 있는 Inconel 600 도체관을 사용하였다. 본 논문으로 통하여 결함의 형상, 크기, 시험주파수의 변화에 따른 탐상신호의 변화를 확인할 수 있었다. 본 논문의 결과는 배열와전류프로브의 와전류탐상 신호 평가시 도움이 될 것이다.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.

Flow Distribution in Manifold Using Modified Equal Pressure Method (수정된 등압법을 이용한 매니폴드의 유량분배)

  • Ye, Huee-Youl;Kim, Doo-Hwan;Lee, Kwan-Soo;Cha, Woo-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.176-185
    • /
    • 2009
  • A general flow distribution model and a simple process of numerical analysis, which can be applied to multi-pass systems with manifolds, are presented. A numerical procedure, namely a modified equal pressure method based on the discrete model, was developed to predict flow rates at branch tubes. The predicted pressure distribution agreed well with the previous research with the average error less than 11%. A parametric study was performed to demonstrate the effect on the flow distribution.

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

An XPS Study of Oxyfluorinated Multiwalled Carbon Nano Tubes

  • Yun, Seok-Min;Kim, Ju-Wan;Jung, Min-Jung;Nho, Young-Chang;Kang, Phil-Hyun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.292-298
    • /
    • 2007
  • In order to investigate functional groups on the surface of Multi-walled Carbon Nanotubes (MWCNTs) induced by oxyfluorination, XPS (X-ray photoelectron spectroscopy) analysis was carried out. All core level spectra of MWCNTs were deconvoluted to several Pseudo-Voigt functions (sum of Gaussian-Lorentzian functions). Both O1s and F1s binding energy of oxyfluorinated MWCNTs shifted high value as increment of fluorine mixing ratio. The carbon-fluorine covalent bonding concentration increased as increment of fluorine mixing ratio. The shape and intensity of OF10-MWCNTs are similar with those of as-received MWCNTs. However, the intensity and binding energies of main peak position of OF20-MWCNTs and OF30-MWCNTs were dramatically increased by oxyfluorination.

Development of design technique for automotive condenser (자동차용 에어컨 응축기의 설계기술 개발)

  • Cho, Y.D.;Han, C.S.;Yoo, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-17
    • /
    • 1999
  • The present work presents condensation heat transfer and pressure drop data for the flow of R-12 in flat extruded aluminum tubes with small hydraulic diameters. The tube outside dimensions are $18mm(width){\times}1.7mm(height)$. Three types of internal geometry with the same outside dimensions are tested : sample 1 (7 tube holes), sample 2 (13 tube holes) and sample 3 (7 tube holes, micro-fin). The overall heat transfer coefficient is obtained for air-to-refrigerant heat transfer, and the Wilson plot method is used to determine the heat transfer coefficient for refrigerant flow. The sample 2 and sample 3 show significantly higher performance than sample 1. The heat transfer rates for the sample 2 and sample 3 are 9% and 12% higher, respectively, than sample 1. The friction factors for the sample 2 and sample 3 are 11.9% and 2.4% higher, respectively, than sample 1.

  • PDF

Heat Transfer Characteristics of Heat Exchange Module for a Water Tube Type Modular Boiler (모듈형 수관식 보일러를 위한 열교환 모듈의 열전달 특성)

  • Ahn, Joon;Kim, Jong-Jin;Kang, Sae-Byul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.265-270
    • /
    • 2012
  • A finned tube type heat exchange module has been proposed for a multi-burner water tube boiler. Fin density and length increase in streamwise direction to equalize the evaporation for each module, which makes it difficult to apply conventional bulk design procedure. The design program has been improved by updating data for every row of tubes along the flow. A numerical simulation has been also conducted to evaluate the effect of inlet conditions and validated with experiment. The heat transfer of the first row has been underpredicted by the conventional Zhukauskas correlation, since the acceleration of the flow due to the blockage is not fully inflected. The fin tip temperature is also underpredicted by Bessel solution, because of the interaction with neighboring fins.