Browse > Article
http://dx.doi.org/10.1016/j.net.2021.04.021

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics  

Choi, Hae Yoon (Department of Nuclear Engineering, Seoul National University)
Chae, Hoon (Department of Nuclear Engineering, Seoul National University)
Kim, Eung Soo (Department of Nuclear Engineering, Seoul National University)
Publication Information
Nuclear Engineering and Technology / v.53, no.10, 2021 , pp. 3264-3274 More about this Journal
Abstract
In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.
Keywords
Fuel-coolant interaction (FCI); Jet breakup; Severe accident; Lagrangian scheme; Smoothed particle hydrodynamics (SPH); Multi-fluid; GPU Parallelization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Saito, Experimental study on penetration behaviors of water jet into freon-11 and liquid nitrogen, in: ANS-proc. 25th Natl. Heat Transfer Conf., 1988, pp. 173-183.
2 H.S. Park, et al., Penetration of isothermal plunging jet into denser liquid, Proc. of 4th KSME-JSME Fluids Engineering Conf. (1998) 581-584.
3 K.H. Bang, J.M. Kim, D.H. Kim, Experimental study of melt jet breakup in water, J. Nucl. Sci. Technol. 40 (10) (2003) 807-813.   DOI
4 E. Matsuo, Y. Abe, H. Nariai, K. Chitose, K. Koyama, K. Itoh, Study on jet breakup behavior at core disruptive accident for fast breeder reactor, International Conference on Nuclear Engineering 42452 (2006, January) 555-563.
5 P.S. Mahapatra, et al., Molten Drop to Coolant Heat Transfer During Premixing of Fuel Coolant Interaction. Droplet and Spray Transport: Paradigms and Applications, Springer, Singapore, 2018, pp. 201-235.
6 Y. Zhou, J. Chen, M. Zhong, J. Wang, M. Lv, Numerical simulation of metal jet breakup, cooling and solidification in water, Int. J. Heat Mass Tran. 109 (2017) 1100-1109.   DOI
7 K. Moriyama, Y. Maruyama, T. Usami, H. Nakamura, Coarse break-up of a stream of oxide and steel melt in a water pool, 2005. JAERI-Research 2005-017.
8 Y. Abe, E. Matsuo, T. Arai, H. Nariai, K. Chitose, K. Koyama, K. Itoh, Fragmentation behavior during molten material and coolant interactions, Nucl. Eng. Des. 236 (14-16) (2006) 1668-1681.   DOI
9 H. Ikeda, S. Koshizuka, Y. Oka, H.S. Park, J. Sugimoto, Numerical analysis of jet injection behavior for fuel-coolant interaction using particle method, J. Nucl. Sci. Technol. 38 (3) (2001) 174-182.   DOI
10 S. Park, H.S. Park, B.I. Jang, H.J. Kim, 3-D simulation of plunging jet penetration into a denser liquid pool by the RD-MPS method, Nucl. Eng. Des. 299 (2016) 154-162.   DOI
11 S. Thakre, L. Manickam, W. Ma, A numerical simulation of jet breakup in melt coolant interactions, Ann. Nucl. Energy 80 (2015) 467-475.   DOI
12 G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: a Meshfree Particle Method, World scientific, 2003.
13 H.F. Schwaiger, An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions, Int. J. Numer. Methods Eng. 75 (6) (2008) 647-671.   DOI
14 L. Brookshaw, Solving the heat diffusion equation in SPH, Memor. Soc. Astronom. Ital. 65 (1994) 1033.
15 Y.B. Jo, S.H. Park, H.Y. Choi, H.W. Jung, Y.J. Kim, E.S. Kim, SOPHIA: development of Lagrangian-based CFD code for nuclear thermal-hydraulics and safety applications, Ann. Nucl. Energy 124 (2019) 132-149.   DOI
16 N. Grenier, M. Antuono, A. Colagrossi, D. Le Touze, B. Alessandrini, An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. Comput. Phys. 228 (22) (2009) 8380-8393.   DOI
17 S. Adami, X.Y. Hu, N.A. Adams, A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J. Comput. Phys. 229 (13) (2010) 5011-5021.   DOI
18 K.H. Bang, H.T. Kim, V.D. Tan, Experiment and modeling of jet breakup in fuel-coolant interactions, Ann. Nucl. Energy 118 (2018) 336-344.   DOI
19 S.J. Board, R.W. Hall, Recent advances in understanding large scale vapour explosions (No. NEA-CSNI-R-1976-8), 1976.
20 J.D. Anderson, J. Wendt, Computational Fluid Dynamics, vol. 206, McGraw-Hill, New York, 1995, p. 332.
21 R. Saito, Y. Abe, H. Yoshida, Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum, J. Nucl. Sci. Technol. 51 (1) (2014) 64-76.   DOI
22 A.R. Antariksawan, K. Moriyama, H.S. Park, Y. Maruyama, Y. Yang, J. Sugimoto, The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments (No. JAERI-REVIEW-98-012), Japan Atomic Energy Research Inst (1998).
23 T.N. Dinh, V.A. Bui, J.A. Nourgaliev, J.A. Green, B.R Segal, Experimental andanalytical studies of melt jet-coolant interactions: a synthesis, Nucl. Eng. Des. 189 (1-3) (1999) 299-327.   DOI
24 S.C. Escobar, R. Meignen, S. Picchi, N. Rimbert, M. Gradeck, A two-scale Approach for modeling the corium melt fragmentation during fuel-coolant interaction, in: NURETH-16: International Topical Meeting on Nucelar Reactor Thermal Hydraulics, Omnipress, 2015, August.
25 V.P. Carey, Liquid-vapor phase-change phenomena, 1992. United States.
26 Y. Abe, T. Kizu, T. Arai, H. Nariai, K. Chitose, K. Koyama, Study on thermal-hydraulic behavior during molten material and coolant interaction, Nucl. Eng. Des. 230 (1-3) (2004) 277-291.   DOI
27 L. Manickam, S. Bechta, W. Ma, On the fragmentation characteristics of melt jets quenched in water, Int. J. Multiphas. Flow 91 (2017) 262-275.   DOI
28 L. Brookshaw, A method of calculating radiative heat diffusion in particle simulations, Proc. Astron. Soc. Aust. 6 (1985) 207-210.   DOI
29 J.R. Richards, A.N. Beris, A.M. Lenhoff, Drop formation in liquideliquid systems before and after jetting, Phys. Fluids 7 (11) (1995) 2617-2630.   DOI
30 A. Zhang, P. Sun, F. Ming, An SPH modeling of bubble rising and coalescing in three dimensions, Comput. Methods Appl. Mech. Eng. 294 (2015) 189-209.   DOI
31 M. Burger, S.H. Cho, E.V. Berg, A. Schatz, Breakup of melt jets as pre-condition for premixing: modeling and experimental verification, Nucl. Eng. Des. 155 (1-2) (1995) 215-251.   DOI
32 J.J. Monaghan, Simulating free surface flows with SPH, J. Comput. Phys. 110 (2) (1994) 399-406.   DOI
33 D. Magallon, I. Huhtiniemi, H. Hohmann, Lessons learnt from FARO/TERMOS corium melt quenching experiments, Nucl. Eng. Des. 189 (1-3) (1999) 223-238.   DOI
34 R. Saito, Y. Abe, H. Yoshida, Breakup and fragmentation behavior of molten material jet in multi-channel of BWR lower plenum, J. Nucl. Sci. Technol. 53 (2) (2016) 147-160.   DOI
35 M. Epstein, H.K. Fauske, Applications of the turbulent entrainment assumption to immiscible gas-liquid and liquid-liquid systems, Chem. Eng. Res. Des. 79 (4) (2001) 453-462.   DOI
36 T. Suzuki, H. Yoshida, F. Nagase, Development of numerical evaluation method for fluid dynamics effects on jet breakup phenomena in BWR lower plenum, J. Nucl. Sci. Technol. 51 (7-8) (2014) 968-976.   DOI