• Title/Summary/Keyword: multi tubes

Search Result 157, Processing Time 0.024 seconds

Eddy Current Testing for Radiator Tubes Surrounded by Cooling Fins

  • Nagata, Shoichiro;Tsubusa, Yoshiaki;Enokizono, Masato
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.276-280
    • /
    • 2011
  • This paper presents a non-destructive evaluation study on a radiator with cooling fins as a complex shaped specimen. Radiator structures are used in various heat exchangers, such as automobiles, air conditioners and refrigerators. An eddy current testing method, namely multi-frequency excitation and spectrogram method (MFES), was employed to detect a defect on the radiator tube surrounded by cooling fins. Overall, experimental results suggested that the influence of cooling fin is not as noticeable as that of the defect signals.

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

Development of a Low Noisy Type of Air-line Mask (저소음형 송기마스크 개발)

  • Paik, Eun-Gyu;Kim, Bong-Nyun;Kim, Kwang-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.277-281
    • /
    • 2005
  • Air-line mask is an important personal protective equipment for workers working under hazardous surroundings in which a fixed ventilation system is difficult to be installed. If the air-line mask make loud noise, works wearing the mask may be faced with health problems such as noise induced hearing loss(NIHL). The purpose of this study is to introduce a low noisy technology for workers using air-line mask. A traditional type air-line has been improved to an advanced air-line mask with lesser noise. In the mask, air suppling conduits consists of multi tubes are placed inside of the front of the safety helmet. The noise level reduced from 80dB(A) to less than 80dB(A) when measured by KS A 0701 method at Center for Safety Inspection, Testing and Certification for KOSHA. It is suitable for related regulation[Article 35 of the Industrial Safety and Health Act(Test of Personal Protective Equipment)]. While workers working in noise level of over 90dB(A), they may expose to 82dB(A) or less when they wear the advanced masks. This type masks can be an alternative for works suffering from loud noise generated by traditional air-line masks.

Joining of Multi Nodes of a Titanium Bicycle by the Superplastic Hydroforming and Diffusion Bonding Technology (티타늄 자전거의 다중 조인트 접합을 위한 초소성 하이드로포밍과 확산 접합 기술)

  • Yoo, Y.H.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • The superplastic forming/diffusion bonding process has been developed to fabricate a core frame structure with joint nodes out of tubes, for the development of a titanium high performance bicycle. The hydroforming process has been applied for bulging of a tube in the superplastic condition before, and during the diffusion bonding process. In this experiment, a commercial Ti-3Al-2.5V tube was selected as raw material for the study. The forming experiment has been performed using a servo-hydraulic press with a capacity of 200 ton. Next, nitrogen gas was used to acquire necessary pressure for the bulging and bonding of the tubes to fabricate the joint nodes. The pertinent processing temperature was $870^{\circ}C$ for the superplastic hydroforming/diffusion bonding (SHF/DB) process, using the Ti-3Al-2.5V tube. The bonding quality and the progress of bulging and diffusion bonding have been observed by the investigation of the joining interfaces at the cross section of the joint structure. The control of the nitrogen pressure throughout the SHF/DB process, was an important factor to avoid any significant defects in the joint structure. The whole progress stage of the diffusion bonding could be observed at a joint interface. A core structure with 5 joint nodes to manufacture a titanium bicycle could be obtained in a SHF/DB process.

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

Double-walled carbon nanotubes: synthesis, structural characterization, and application

  • Kim, Yoong Ahm;Yang, Kap-Seung;Muramatsu, Hiroyuki;Hayashi, Takuya;Endo, Morinobu;Terrones, Mauricio;Dresselhaus, Mildred S.
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.