DOI QR코드

DOI QR Code

Double-walled carbon nanotubes: synthesis, structural characterization, and application

  • Kim, Yoong Ahm (School of Polymer Science and Engineering, Chonnam National University) ;
  • Yang, Kap-Seung (School of Polymer Science and Engineering, Chonnam National University) ;
  • Muramatsu, Hiroyuki (Department of Materials Science and Technology, Nagaoka University of Technology) ;
  • Hayashi, Takuya (Faculty of Engineering, Shinshu University) ;
  • Endo, Morinobu (Faculty of Engineering, Shinshu University) ;
  • Terrones, Mauricio (Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University) ;
  • Dresselhaus, Mildred S. (Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology)
  • Received : 2014.03.11
  • Accepted : 2014.03.25
  • Published : 2014.04.30

Abstract

Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.

Keywords

References

  1. Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9.
  2. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  3. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
  4. Endo M, Saito R, Dresselhaus MS, Dresselhaus G. From carbon fibers to nanotubes. In: Ebbesen TW, ed. Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL, 35 (1997).
  5. Saito R, Dresselhaus G, Dresselhaus MS. Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK (1998).
  6. Harris PJF. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press, Cambridge, UK (1999).
  7. Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York, NY (2008).
  8. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 339, 535 (2013). http://dx.doi.org/10.1126/science.1222453.
  9. Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Nanotechnology: 'Buckypaper' from coaxial nanotubes. Nature, 433, 476 (2005). http://dx.doi.org/10.1038/433476a.
  10. Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem Vap Deposition, 12, 327 (2006). http://dx.doi.org/10.1002/cvde.200504217.
  11. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.
  12. Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Kim YJ, Tantrakarn K, Endo M, Terrones M, Dresselhaus MS. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett, 414, 444 (2005). http://dx.doi.org/10.1016/j.cplett.2005.08.110.
  13. Thomsen C, Reich S. Double resonant Raman scattering in graphite. Phys Rev Lett, 85, 5214 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.5214.
  14. Jorio A, Pimenta MA, Filho AGS, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys, 5, 139 (2003). http://dx.doi.org/10.1088/1367-2630/5/1/139.
  15. Kim YA, Muramatsu H, Kojima M, Hayashi T, Endo M, Terrones M, Dresselhaus MS. The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chem Phys Lett, 420, 377 (2006). http://dx.doi.org/10.1016/j.cplett.2005.12.068.
  16. Yudasaka M, Ichihashi T, Kasuya D, Kataura H, Iijima S. Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment. Carbon, 41, 1273 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00076-9.
  17. Terrones M, Terrones H, Banhart F, Charlier JC, Ajayan PM. Coalescence of single-walled carbon nanotubes. Science, 288, 1226 (2000). http://dx.doi.org/10.1126/science.288.5469.1226.
  18. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band Gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.
  19. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361 (2002). http://dx.doi.org/10.1126/science.1078727.
  20. Lebedkin S, Hennrich F, Skipa T, Kappes MM. Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J Phys Chem B, 107, 1949 (2003). http://dx.doi.org/10.1021/jp027096z.
  21. Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem Phys Lett, 387, 198 (2004). http://dx.doi.org/10.1016/j.cplett.2004.01.116.
  22. Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Oyama Y, Saito R, Iijima S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem Phys Lett, 420, 286 (2006). http://dx.doi.org/10.1016/j.cplett.2005.11.128.
  23. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science, 311, 508 (2006). http://dx.doi.org/10.1126/science.1120792.
  24. Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater, 17, 2793 (2005). http://dx.doi.org/10.1002/adma.200500477.
  25. Itkis ME, Borondics F, Yu A, Haddon RC. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312, 413 (2006). http://dx.doi.org/10.1126/science.1125695.
  26. Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett, 5, 511 (2005). http://dx.doi.org/10.1021/nl050069a.
  27. Shimamoto D, Muramatsu H, Hayashi T, Kim YA, Endo M, Park JS, Saito R, Terrones M, Dresselhaus MS. Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Appl Phys Lett, 94, 083106 (2009). http://dx.doi.org/10.1063/1.3085966.
  28. Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Endo M, Meunier V, Sumpter BG, Terrones M, Dresselhaus MS. Bright photoluminescence from the inner tubes of "peapod"-derived double-walled carbon nanotubes. Small, 5, 2678 (2009). http://dx.doi.org/10.1002/smll.200901305.
  29. Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H. Fluorination of double-walled carbon nanotubes. Chem Commun, 2002 (2005). http://dx.doi.org/10.1039/B416393A.
  30. Hayashi T, Shimamoto D, Kim YA, Muramatsu H, Okino F, Touhara H, Shimada T, Miyauchi Y, Maruyama S, Terrones M, Dresselhaus MS, Endo M. Selective optical property modification of double-walled carbon nanotubes by fluorination. ACS Nano, 2, 485 (2008). http://dx.doi.org/10.1021/nn700391w.
  31. Kawasaki S, Aketa T, Touhara H, Okino F, Boltalina OV, Gol'd IV, Troyanov SI, Taylor R. Crystal structures of the fluorinated fullerenes $C_{60}F_{36}\;and\;C_{60}F_{48}$. J Phys Chem B, 103, 1223 (1999). http://dx.doi.org/10.1021/jp983394d.
  32. Liu N, Touhara H, Okino F, Kawasaki S, Nakacho Y. Solid-state lithium cells based on fluorinated fullerene cathodes. J Electrochem Soc, 143, 2267 (1996). http://dx.doi.org/10.1149/1.1836992.
  33. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL. Fluorination of single-wall carbon nanotubes. Chem Phys Lett, 296, 188 (1998). http://dx.doi.org/10.1016/S0009-2614(98)01026-4.
  34. An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park CY, Lee YH, Lee YS, Chung YS. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett, 80, 4235 (2002). http://dx.doi.org/10.1063/1.1482801.
  35. Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H. Fluorination of open- and closed-end single-walled carbon nanotubes. Phys Chem Chem Phys, 6, 1769 (2004). http://dx.doi.org/10.1039/B317011J.
  36. Shi W, Wang Z, Zhang Q, Zheng Y, Ieong C, He M, Lortz R, Cai Y, Wang N, Zhang T, Zhang H, Tang Z, Sheng P, Muramatsu H, Kim YA, Endo M, Araujo PT, Dresselhaus MS. Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep, 2, 625 (2012). http://dx.doi.org/10.1038/srep00625.
  37. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.
  38. Kim YA, Kojima M, Muramatsu H, Umemoto S, Watanabe T, Yoshida K, Sato K, Ikeda T, Hayashi T, Endo M, Terrones M, Dresselhaus MS. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small, 2, 667 (2006). http://dx.doi.org/10.1002/smll.200500496.
  39. Miyamoto J, Hattori Y, Noguchi D, Tanaka H, Ohba T, Utsumi S, Kanoh H, Kim YA, Muramatsu H, Hayashi T, Endo M, Kaneko K. Efficient $H_2$ adsorption by nanopores of high-purity double-walled carbon nanotubes. J Am Chem Soc, 128, 12636 (2006). http://dx.doi.org/10.1021/ja064744+.
  40. Radovic LR, Rodriguez-Reinoso F. Carbon materials in catalysis. In: Thrower PA, ed. Chemistry and Physics of Carbon, Marcel Dekker, New York, NY, 1 (1997).
  41. Roman-Martinez MC, Cazorla-Amoros D, Linares-Solano A, De Lecea CS-Mn, Yamashita H, Anpo M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon, 33, 3 (1995). http://dx.doi.org/10.1016/0008-6223(94)00096-I.
  42. Li W, Wang X, Chen Z, Waje M, Yan Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B, 110, 15353 (2006). http://dx.doi.org/10.1021/jp0623443.
  43. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0.
  44. Hudspeth QM, Nagle KP, Zhao YP, Karabacak T, Nguyen CV, Meyyappan M, Wang GC, Lu TM. How does a multiwalled carbon nanotube atomic force microscopy probe affect the determination of surface roughness statistics? Surf Sci, 515, 453 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01955-6.
  45. Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takeyasu K. Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett, 74, 4061 (1999). http://dx.doi.org/10.1063/1.123261.
  46. Ye Q, Cassell AM, Liu H, Chao KJ, Han J, Meyyappan M. Largescale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications. Nano Lett, 4, 1301 (2004). http://dx.doi.org/10.1021/nl049341r.
  47. Kuwahara S, Akita S, Shirakihara M, Sugai T, Nakayama Y, Shinohara H. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem Phys Lett, 429, 581 (2006). http://dx.doi.org/10.1016/j.cplett.2006.08.045.
  48. de Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 270, 1179 (1995). http://dx.doi.org/10.1126/science.270.5239.1179.
  49. Bonard JM, Croci M, Klinke C, Kurt R, Noury O, Weiss N. Carbon nanotube films as electron field emitters. Carbon, 40, 1715 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00011-8.
  50. Bonard JM, Salvetat JP, Stockli T, de Heer WA, Forro L, Chatelain A. Field emission from single-wall carbon nanotube films. Appl Phys Lett, 73, 918 (1998). http://dx.doi.org/10.1063/1.122037.
  51. Seco K, Kinoshita J, Saito Y. In situ transmission electron microscopy of field-emitting bundles of double-wall carbon nanotubes. Jpn J Appl Phys, 44, L743 (2005). http://dx.doi.org/10.1143/JJAP.44.L743.
  52. Son YW, Oh S, Ihm J, Han S. Field emission properties of double-wall carbon nanotubes. Nanotechnology, 16, 125 (2005). http://dx.doi.org/10.1088/0957-4484/16/1/025.
  53. Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc, 128, 13338 (2006). http://dx.doi.org/10.1021/ja0643772.
  54. Knupfer M. Electronic properties of carbon nanostructures. Surf Sci Rep, 42, 1 (2001). http://dx.doi.org/10.1016/S0167-5729(00)00012-1.
  55. Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 314, 974 (2006). http://dx.doi.org/10.1126/science.1133781.
  56. Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H. Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett, 84, 2412 (2004). http://dx.doi.org/10.1063/1.1689404.
  57. Wang S, Liang XL, Chen Q, Zhang ZY, Peng LM. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. J Phys Chem B, 109, 17361 (2005). http://dx.doi.org/10.1021/jp053739+.
  58. Jung YC, Shimamoto D, Muramatsu H, Kim YA, Hayashi T, Terrones M, Endo M. Robust, Conducting, and transparent polymer composites using surface-modified and individualized doublewalled carbon nanotubes. Adv Mater, 20, 4509 (2008). http://dx.doi.org/10.1002/adma.200801659.

Cited by

  1. Large-Diameter Single-Wall Carbon Nanotubes Formed Alongside Small-Diameter Double-Walled Carbon Nanotubes vol.119, pp.3, 2015, https://doi.org/10.1021/jp509080e
  2. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes vol.58, pp.5, 2016, https://doi.org/10.1134/S1063783416050048
  3. A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications vol.6, pp.4, 2016, https://doi.org/10.3390/app6040109
  4. Structural Properties of Double-Walled Carbon Nanotubes Driven by Mechanical Interlayer Coupling vol.11, pp.5, 2017, https://doi.org/10.1021/acsnano.7b01328
  5. Templated direct growth of ultra-thin double-walled carbon nanotubes vol.10, pp.45, 2018, https://doi.org/10.1039/C8NR06925E