Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.2.077

Double-walled carbon nanotubes: synthesis, structural characterization, and application  

Kim, Yoong Ahm (School of Polymer Science and Engineering, Chonnam National University)
Yang, Kap-Seung (School of Polymer Science and Engineering, Chonnam National University)
Muramatsu, Hiroyuki (Department of Materials Science and Technology, Nagaoka University of Technology)
Hayashi, Takuya (Faculty of Engineering, Shinshu University)
Endo, Morinobu (Faculty of Engineering, Shinshu University)
Terrones, Mauricio (Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University)
Dresselhaus, Mildred S. (Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology)
Publication Information
Carbon letters / v.15, no.2, 2014 , pp. 77-88 More about this Journal
Abstract
Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.
Keywords
double walled carbon nanotubes; coupling interaction; outer tube chemistry; Raman;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Endo M, Saito R, Dresselhaus MS, Dresselhaus G. From carbon fibers to nanotubes. In: Ebbesen TW, ed. Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL, 35 (1997).
2 Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9.   DOI   ScienceOn
3 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.   DOI
4 Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
5 Saito R, Dresselhaus G, Dresselhaus MS. Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK (1998).
6 Harris PJF. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press, Cambridge, UK (1999).
7 Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York, NY (2008).
8 De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 339, 535 (2013). http://dx.doi.org/10.1126/science.1222453.   DOI   ScienceOn
9 Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Nanotechnology: 'Buckypaper' from coaxial nanotubes. Nature, 433, 476 (2005). http://dx.doi.org/10.1038/433476a.   DOI   ScienceOn
10 Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem Vap Deposition, 12, 327 (2006). http://dx.doi.org/10.1002/cvde.200504217.   DOI
11 Jorio A, Pimenta MA, Filho AGS, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys, 5, 139 (2003). http://dx.doi.org/10.1088/1367-2630/5/1/139.   DOI   ScienceOn
12 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.   DOI   ScienceOn
13 Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Kim YJ, Tantrakarn K, Endo M, Terrones M, Dresselhaus MS. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett, 414, 444 (2005). http://dx.doi.org/10.1016/j.cplett.2005.08.110.   DOI
14 Thomsen C, Reich S. Double resonant Raman scattering in graphite. Phys Rev Lett, 85, 5214 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.5214.   DOI   ScienceOn
15 O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band Gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.   DOI   ScienceOn
16 Kim YA, Muramatsu H, Kojima M, Hayashi T, Endo M, Terrones M, Dresselhaus MS. The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chem Phys Lett, 420, 377 (2006). http://dx.doi.org/10.1016/j.cplett.2005.12.068.   DOI
17 Yudasaka M, Ichihashi T, Kasuya D, Kataura H, Iijima S. Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment. Carbon, 41, 1273 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00076-9.   DOI   ScienceOn
18 Terrones M, Terrones H, Banhart F, Charlier JC, Ajayan PM. Coalescence of single-walled carbon nanotubes. Science, 288, 1226 (2000). http://dx.doi.org/10.1126/science.288.5469.1226.   DOI
19 Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361 (2002). http://dx.doi.org/10.1126/science.1078727.   DOI   ScienceOn
20 Lebedkin S, Hennrich F, Skipa T, Kappes MM. Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J Phys Chem B, 107, 1949 (2003). http://dx.doi.org/10.1021/jp027096z.   DOI
21 Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater, 17, 2793 (2005). http://dx.doi.org/10.1002/adma.200500477.   DOI   ScienceOn
22 Itkis ME, Borondics F, Yu A, Haddon RC. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312, 413 (2006). http://dx.doi.org/10.1126/science.1125695.   DOI
23 Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem Phys Lett, 387, 198 (2004). http://dx.doi.org/10.1016/j.cplett.2004.01.116.   DOI
24 Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Oyama Y, Saito R, Iijima S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem Phys Lett, 420, 286 (2006). http://dx.doi.org/10.1016/j.cplett.2005.11.128.   DOI
25 Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science, 311, 508 (2006). http://dx.doi.org/10.1126/science.1120792.   DOI
26 Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett, 5, 511 (2005). http://dx.doi.org/10.1021/nl050069a.   DOI
27 Shimamoto D, Muramatsu H, Hayashi T, Kim YA, Endo M, Park JS, Saito R, Terrones M, Dresselhaus MS. Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Appl Phys Lett, 94, 083106 (2009). http://dx.doi.org/10.1063/1.3085966.   DOI
28 Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Endo M, Meunier V, Sumpter BG, Terrones M, Dresselhaus MS. Bright photoluminescence from the inner tubes of "peapod"-derived double-walled carbon nanotubes. Small, 5, 2678 (2009). http://dx.doi.org/10.1002/smll.200901305.   DOI
29 Hayashi T, Shimamoto D, Kim YA, Muramatsu H, Okino F, Touhara H, Shimada T, Miyauchi Y, Maruyama S, Terrones M, Dresselhaus MS, Endo M. Selective optical property modification of double-walled carbon nanotubes by fluorination. ACS Nano, 2, 485 (2008). http://dx.doi.org/10.1021/nn700391w.   DOI
30 Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H. Fluorination of double-walled carbon nanotubes. Chem Commun, 2002 (2005). http://dx.doi.org/10.1039/B416393A.   DOI
31 An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park CY, Lee YH, Lee YS, Chung YS. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett, 80, 4235 (2002). http://dx.doi.org/10.1063/1.1482801.   DOI   ScienceOn
32 Kawasaki S, Aketa T, Touhara H, Okino F, Boltalina OV, Gol'd IV, Troyanov SI, Taylor R. Crystal structures of the fluorinated fullerenes $C_{60}F_{36}\;and\;C_{60}F_{48}$. J Phys Chem B, 103, 1223 (1999). http://dx.doi.org/10.1021/jp983394d.   DOI
33 Liu N, Touhara H, Okino F, Kawasaki S, Nakacho Y. Solid-state lithium cells based on fluorinated fullerene cathodes. J Electrochem Soc, 143, 2267 (1996). http://dx.doi.org/10.1149/1.1836992.   DOI
34 Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL. Fluorination of single-wall carbon nanotubes. Chem Phys Lett, 296, 188 (1998). http://dx.doi.org/10.1016/S0009-2614(98)01026-4.   DOI   ScienceOn
35 Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H. Fluorination of open- and closed-end single-walled carbon nanotubes. Phys Chem Chem Phys, 6, 1769 (2004). http://dx.doi.org/10.1039/B317011J.   DOI
36 Miyamoto J, Hattori Y, Noguchi D, Tanaka H, Ohba T, Utsumi S, Kanoh H, Kim YA, Muramatsu H, Hayashi T, Endo M, Kaneko K. Efficient $H_2$ adsorption by nanopores of high-purity double-walled carbon nanotubes. J Am Chem Soc, 128, 12636 (2006). http://dx.doi.org/10.1021/ja064744+.   DOI   ScienceOn
37 Shi W, Wang Z, Zhang Q, Zheng Y, Ieong C, He M, Lortz R, Cai Y, Wang N, Zhang T, Zhang H, Tang Z, Sheng P, Muramatsu H, Kim YA, Endo M, Araujo PT, Dresselhaus MS. Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep, 2, 625 (2012). http://dx.doi.org/10.1038/srep00625.   DOI
38 Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.   DOI   ScienceOn
39 Kim YA, Kojima M, Muramatsu H, Umemoto S, Watanabe T, Yoshida K, Sato K, Ikeda T, Hayashi T, Endo M, Terrones M, Dresselhaus MS. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small, 2, 667 (2006). http://dx.doi.org/10.1002/smll.200500496.   DOI
40 Radovic LR, Rodriguez-Reinoso F. Carbon materials in catalysis. In: Thrower PA, ed. Chemistry and Physics of Carbon, Marcel Dekker, New York, NY, 1 (1997).
41 Roman-Martinez MC, Cazorla-Amoros D, Linares-Solano A, De Lecea CS-Mn, Yamashita H, Anpo M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon, 33, 3 (1995). http://dx.doi.org/10.1016/0008-6223(94)00096-I.   DOI
42 Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takeyasu K. Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett, 74, 4061 (1999). http://dx.doi.org/10.1063/1.123261.   DOI   ScienceOn
43 Ye Q, Cassell AM, Liu H, Chao KJ, Han J, Meyyappan M. Largescale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications. Nano Lett, 4, 1301 (2004). http://dx.doi.org/10.1021/nl049341r.   DOI   ScienceOn
44 Li W, Wang X, Chen Z, Waje M, Yan Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B, 110, 15353 (2006). http://dx.doi.org/10.1021/jp0623443.   DOI   ScienceOn
45 Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0.   DOI   ScienceOn
46 Hudspeth QM, Nagle KP, Zhao YP, Karabacak T, Nguyen CV, Meyyappan M, Wang GC, Lu TM. How does a multiwalled carbon nanotube atomic force microscopy probe affect the determination of surface roughness statistics? Surf Sci, 515, 453 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01955-6.   DOI
47 Kuwahara S, Akita S, Shirakihara M, Sugai T, Nakayama Y, Shinohara H. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem Phys Lett, 429, 581 (2006). http://dx.doi.org/10.1016/j.cplett.2006.08.045.   DOI
48 de Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 270, 1179 (1995). http://dx.doi.org/10.1126/science.270.5239.1179.   DOI   ScienceOn
49 Bonard JM, Croci M, Klinke C, Kurt R, Noury O, Weiss N. Carbon nanotube films as electron field emitters. Carbon, 40, 1715 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00011-8.   DOI   ScienceOn
50 Bonard JM, Salvetat JP, Stockli T, de Heer WA, Forro L, Chatelain A. Field emission from single-wall carbon nanotube films. Appl Phys Lett, 73, 918 (1998). http://dx.doi.org/10.1063/1.122037.   DOI   ScienceOn
51 Knupfer M. Electronic properties of carbon nanostructures. Surf Sci Rep, 42, 1 (2001). http://dx.doi.org/10.1016/S0167-5729(00)00012-1.   DOI
52 Seco K, Kinoshita J, Saito Y. In situ transmission electron microscopy of field-emitting bundles of double-wall carbon nanotubes. Jpn J Appl Phys, 44, L743 (2005). http://dx.doi.org/10.1143/JJAP.44.L743.   DOI
53 Son YW, Oh S, Ihm J, Han S. Field emission properties of double-wall carbon nanotubes. Nanotechnology, 16, 125 (2005). http://dx.doi.org/10.1088/0957-4484/16/1/025.   DOI
54 Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc, 128, 13338 (2006). http://dx.doi.org/10.1021/ja0643772.   DOI   ScienceOn
55 Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 314, 974 (2006). http://dx.doi.org/10.1126/science.1133781.   DOI   ScienceOn
56 Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H. Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett, 84, 2412 (2004). http://dx.doi.org/10.1063/1.1689404.   DOI   ScienceOn
57 Wang S, Liang XL, Chen Q, Zhang ZY, Peng LM. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. J Phys Chem B, 109, 17361 (2005). http://dx.doi.org/10.1021/jp053739+.   DOI
58 Jung YC, Shimamoto D, Muramatsu H, Kim YA, Hayashi T, Terrones M, Endo M. Robust, Conducting, and transparent polymer composites using surface-modified and individualized doublewalled carbon nanotubes. Adv Mater, 20, 4509 (2008). http://dx.doi.org/10.1002/adma.200801659.   DOI