• Title/Summary/Keyword: multi core-shell composite particle

Search Result 5, Processing Time 0.019 seconds

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle (알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조)

  • Cho, Dae-Hoon;Choi, Sung-Il;Go, Hyun-Mi;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2011
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.

Effect of Latex Particle Morphology on the Film Formation and Film Properties of Acrylic Coatings ( I );Preparation and Characterization of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향( I );모델 복합 라텍스 입자의 제조 및 특성)

  • Ju, In-Ho;Ahn, Jae-Won;Byun, Ja-Hoon;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, various model composite latexes were synthesized using n-butyl acrylate and methyl methacrylate as comonomers by seeded multi-staged emulsion polymerization. Monodispersed model composite latex particles with size of 190 nm and polydispersity index of 1.05, which have various morphology including random copolymer particle, soft-core/hard-shell particle, hard-core/soft shell particle, and gradient-type copolymer particle, homopolymers particles were prepared. The designed morphology of model composite particles were confirmed.

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.