• 제목/요약/키워드: mppt

검색결과 601건 처리시간 0.03초

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

차세대 저궤도 소형위성 적용을 위한 전력시스템 설계 (Power System Design for Next Generation LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

태양광 발전용 FPGA기반 승압형 컨버터의 제어 (Control of Boost Converter based on FPGA for Solar Energy System)

  • 이우희;김형진;천경민;이준하;이흥주
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.512-517
    • /
    • 2006
  • 본 논문에서는 태양광 발전시스템의 최대전력추종을 위해 퍼지 이론을 도입한 퍼지제어기를 설계하였다. 퍼지제어기의 디지털 설계를 위해 태양광 발전시스템의 각 부분을 구성하고, FPGA를 사용하여 제어기를 구현하였다. 구현된 제어기는 일사량의 변화에도 안정적으로 동작하며, 출력전압의 리플이 작은 결과를 보였다. 또한 FPGA의 퍼지제어기로서의 구현가능성을 발견하고 그 타당성을 입증하였다.

  • PDF

컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석 (Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;오승진;한병문;정병창;정용호;최영도;전영수
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

바이폴 ±750 직류 배전망 연계용 태양광 발전 시뮬레이터 구현 (Implementation of a Photovoltaic System Simulator for Interconnecting with Bipolar ±750V DC distribution Grid)

  • 김태훈;김석웅;조진태;김주용;정재승
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1800-1805
    • /
    • 2016
  • The micro-grid designed as bipolar ${\pm}750V$ low-voltage DC power distribution system demonstrated by KEPRI, demands interconnection of a number of small decentralized power source including variable renewable generator. Therefore, variable researches for the influence of interconnection with the bipolar typed DC grid and these variable power sources are required for superior quality of power distribution. Renewable power generation simulators for the bipolar ${\pm}750V$ low-voltage DC power distribution system are necessary for such researches. In this paper, we carry out a research on the photovoltaic simulator that be actually able to interconnect with a bipolar ${\pm}750V$ low-voltage micro-grid. Simulator for this research is not only able to simulate photovoltaic generation according to weather informations and PV modules characteristics, but also contribute to stabilization of bipolar ${\pm}750V$ low-voltage of the system. Therefore, the simulator was designed to develop a system that can situationally respond to variable control algorithms such as the MPPT control, droop control, EMS power control, etc.

PV 시스템을 이용한 단상유도전동기의 벡터제어 (Voctor Control of Single Phase Induction Motor using PV system)

  • 고재섭;최정식;정병진;김도연;박기태;최정훈;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.195-197
    • /
    • 2007
  • The water pumping system uses a variable speed single phase induction motor driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage$(V_{dq})$, current$(I_{dq})$, speed of motor and torque.

  • PDF

3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구 (A Study on Performance Analysis of 3kW Grid-Connected PV Systems)

  • 소정훈;최주엽;유권종;정영석;최재호
    • 한국태양에너지학회 논문집
    • /
    • 제24권2호
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.

Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발 (Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter)

  • 김동희;이희서;이영달;이은주;이태원;이병국
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.