• 제목/요약/키워드: moving velocity

검색결과 1,025건 처리시간 0.022초

이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구 (A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate)

  • 이종석;김동건;김문경;윤순현;김봉환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구 (A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate)

  • 전진호;서영호;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구 (Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear)

  • 신정우;이영신;김성찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF

바닥면이 움직이는 이차원 채널 내 액적의 특성 연구 (Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall)

  • 김형락;윤현식;정해권;하만영
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.103-110
    • /
    • 2011
  • A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석 (Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving)

  • 이호준;채흥석;서호태;이경수
    • 자동차안전학회지
    • /
    • 제10권2호
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

하도만곡형상에 따른 수리특성분석 (The Analysis of Hydrological Property with Curved-channel Type)

  • 안승섭;이상일;박동일;김위석
    • 한국환경과학회지
    • /
    • 제20권10호
    • /
    • pp.1309-1317
    • /
    • 2011
  • This study selected 6 river reach, which have various curved-channel, included in an object of study as making the Nakdong River, which is a real nature river, as a point of an object of study by using SMS RMA-2 model, a 2D numerical analysis model, and applied project flood and analyzed and examined characteristic of hydrological property and super-elevation, which includes characteristic of the velocity of a moving fluid. As a result, in a river reach, whose width is wide, angle of curved-channel has impact on the velocity of a moving fluid of inside of curved-channel and in a river reach, whose width is narrow, the radius of curvature and width of the river have impact on the velocity of a moving fluid of inside of curved-channel. Also it found out that the ratio of reduction in water-level of inside of curved-channel is more bigger than ratio of increasing in water-level of outside of curved-channel when project flood is increasing and angle of curve is increasing. Based on this, this study would be used as a expectation of danger and preliminary data in planning real river or a business, that creates an environment.

조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계 (LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command)

  • 서형규;박재영;안정훈
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

크랙을 가진 유체유동 단순지지 파이프의 동특성 해석 (Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack)

  • 윤한익;최창수;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.562-569
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion Is derived by using Lagrange’s equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results In higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally. as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid Is Increased. The time which produce the maximum dynamic deflection of the simply supported pipe Is delayed according to the increment of the crack severity.

영구자석형 조작기를 갖는 진공차단기의 동적거동 (Dynamic Behavior of Vacuum Circuit Breaker with Permanent Magnetic Actuator)

  • 유련;김영근;이성호;조해용
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.578-585
    • /
    • 2007
  • A vacuum circuit breaker (VCB) with permanent magnet actuator (PMA) has been studied in this study. Electromagnetic field analysis and dynamic simulations have been carried out for optimal design of VCB by using commercial software Maxwell and ADAMS. This simulation model can be an effective method for the VCB, which has non-linear output force of PMA, friction, and impact for operations. An experiment has been conducted to evaluate correctness of the simulated model. By using this evaluated model, the displacement and velocity characteristics of the VCB have been simulated with following conditions : (1) The different output forces of PMA have been applied, (2) The friction conditions in follow lever shaft and moving part have been changed, (3) The mass conditions of moving part have been changed. The simulated results shows that the velocity characteristics are mainly determined by the output force of PMA. The effects due to the changes of friction conditions against the dynamic characteristics was small, and the mass conditions of the moving parts affect the velocity and a bouncing phenomenon of VCB. From these results, the optimal design conditions for the VCB have been derived.