• 제목/요약/키워드: moving vehicle

검색결과 982건 처리시간 0.03초

AMR 센서를 이용한 차량 속도 검지기 (A Vehicle Speed Detector Using AMR Sensors)

  • 강문호;박윤창
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1398-1404
    • /
    • 2009
  • This paper proposes a vehicle speed detector with anisotropic magnetoresistive (AMR) sensors and addresses experimental results to show the performance of the detector. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors built on a board. The speed of a vehicle is calculated by dividing the known distance between the two sensors with the time difference between two output signals from each sensor, captured sequentially while the vehicle is driving over the sensors. Some field tests have been carried to show the performance of the proposed detector and its usefulness.

Lateral vibration control of a low-speed maglev vehicle in cross winds

  • Yau, J.D.
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.263-283
    • /
    • 2012
  • This paper presents a framework of nonlinear dynamic analysis of a low-speed moving maglev (magnetically levitated) vehicle subjected to cross winds and controlled using a clipped-LQR actuator with time delay compensation. A four degrees-of-freedom (4-DOFs) maglev-vehicle equipped with an onboard PID (Proportional-Integral-Derivative) controller traveling over guideway girders was developed to regulate the electric current and control voltage. With this maglev-vehicle/guideway model, dynamic interaction analysis of a low-speed maglev vehicle with guideway girders was conducted using an iterative approach. Considering the time-delay issue of unsynchronized tuning forces in control process, a clipped-LQR actuator with time-delay compensation is developed to improve control effectiveness of lateral vibration of the running maglev vehicle in cross winds. Numerical simulations demonstrate that although the lateral response of the maglev vehicle moving in cross winds would be amplified significantly, the present clipped-LQR controller exhibits its control performance in suppressing the lateral vibration of the vehicle.

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

전기자동차 충전을 위한 2상 구동 시스템에 관한 연구 (2-phase drive for electric vehicle charging)

  • 전성즙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1-2
    • /
    • 2015
  • In this paper, a 2-phase feeder system for wireless vehicle charging is investigated, which generates moving magnetic field with nearly constant magnitude using 2-phase currents. A moving field is very useful to magnetizing pickups mounted on underneath of electric vehicles.

  • PDF

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

수직 이동부하의 전기-유압 위치제어에 관한 연구 (A Study on the Electric-Hydraulic Position Control of Vertical Moving Plant)

  • 신규재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.129-131
    • /
    • 2000
  • The moving vehicle with disturbances has the 6 degree of freedom motion in the pitching, Yawing, and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection. This paper present PID controller with disturbance rejection function, low sensitivity filter and notch filter for bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment and experiment results.

  • PDF

실시간 차종인식 시스템의 설계 및 구현 (Design and Implementation of a Real-Time Vehicle's Model Recognition System)

  • 최태완
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.877-889
    • /
    • 2006
  • 교통제어나 차량에 연관된 범죄 등에서 자동차의 인식에 관한 연구의 중요성 때문에 이에 관련된 연구는 오래전부터 수행되어 왔다. 본 논문에서는 차량이 주행할 때의 정보와 영상을 획득하여 제조회사별 차종을 인식하는 방법을 제안하고자 한다. 본 논문의 차종인식은 차량의 압력을 이용한 차폭 검출방법, 그리고 보다 더 정확한 인식률을 얻기 위한 레이저 거리계를 이용한 차고 검출방법, $3\sim5$종의 구별을 위 한 차량의 번호판 인식 방법을 조합함으로써 차량 인식의 오류를 줄이는 시스템을 구현하였다. 구현된 차종인식 시스템은 2차원 CCD에 의한 차량의 영상획득과 이를 통한 다양한 영상처리 알고리즘에 의해서 국내의 전 차종에 적용할 수 있으며, 실제의 실험 결과는 높은 인식률을 나타내었다.

Building a mathematics model for lane-change technology of autonomous vehicles

  • Phuong, Pham Anh;Phap, Huynh Cong;Tho, Quach Hai
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.641-653
    • /
    • 2022
  • In the process of autonomous vehicle motion planning and to create comfort for vehicle occupants, factors that must be considered are the vehicle's safety features and the road's slipperiness and smoothness. In this paper, we build a mathematical model based on the combination of a genetic algorithm and a neural network to offer lane-change solutions of autonomous vehicles, focusing on human vehicle control skills. Traditional moving planning methods often use vehicle kinematic and dynamic constraints when creating lane-change trajectories for autonomous vehicles. When comparing this generated trajectory with a man-generated moving trajectory, however, there is in fact a significant difference. Therefore, to draw the optimal factors from the actual driver's lane-change operations, the solution in this paper builds the training data set for the moving planning process with lane change operation by humans with optimal elements. The simulation results are performed in a MATLAB simulation environment to demonstrate that the proposed solution operates effectively with optimal points such as operator maneuvers and improved comfort for passengers as well as creating a smooth and slippery lane-change trajectory.

교통 영상에서의 Backward Moving 충격파 속도 측정 (Backward Moving Shockwave Speed Measurement in Traffic Images)

  • 권영탁;소영성
    • 융합신호처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.6-13
    • /
    • 2002
  • 본 논문에서는 신호 교차로에서 red-time 및 green-time의 backward moving 충격파 속도를 자동 측정하는 영상처리 기반 방법을 제안한다. 충격파(shockwave)란 서로 다른 교통류 상태가 만나는 불연속적인 경계선을 의미하며, 충격파 속도는 충격파가 움직이는 속도 즉, 경계선의 기울기로 구해진다. 본 논문에서는 충격파 속도를 자동 측정하기 위해 거리-시간 다이어그램(distance-time diagram)을 작성하였다. 차량의 전역 추적을 통해서 모든 개별 차량의 이동 경로를 거리-시간 다이어그램에 나타내었고, 이동 경로 곡선의 기울기 변화 패턴을 분석하여 red-time 및 green-time의 backward moving 충격파 속도를 계산하였다. 제안된 방법을 신호 교차로에서 실험하였고 red-time 및 green-time backward moving 충격파 속도의 측정 결과를 얻었다. 충격파 속도를 측정하게 되면 차량 진행 방향의 교통 혼잡 상황을 쉽게 파악할 수 있으므로 고속 도로의 진입차선 제어, 교차로의 자동 신호제어에 효과적으로 응용할 수 있다.

  • PDF

Sweep해법 및 공동구역 2차 재할당에 의한 복수차량 배송 최적화 연구 (Optimization of Multi-Vehicle Delivery using Sweep Algorithm and Common Area Double Reassignment)

  • 박성미;문기주
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.133-140
    • /
    • 2014
  • An efficient heuristic for two-vehicle-one-depot problems is developed in this research. Vehicle moving speeds are various along hour based time intervals due to traffic jams of rush hours. Two different heuristics are examined. One is that the delivery area assignment is made using Sweep algorithm for two vehicles by splitting the whole area in half to equally divide all delivery points. The other is using common area by leaving unassigned area between the assigned for two vehicles. The common area is reassigned by two stages to balance the completion time of two vehicle's delivery. The heuristic with common area performed better than the other due to various vehicle moving speeds and traffic jams.