• Title/Summary/Keyword: moving mesh

검색결과 242건 처리시간 0.021초

Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

  • Yoon, Bumsik;Choi, Kunwoo;Ra, Moonsu;Kim, Whoi-Yul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.224-230
    • /
    • 2015
  • This manuscript presents a real-time solution for 3D human body reconstruction with multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D) cameras, each located at approximately $90^{\circ}$ from the next camera around a freely moving human body. A single mesh is constructed from the captured point clouds by iteratively removing the estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is developed, recovering the 3D shape from various conditions, considering the direction of the camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time processing owing to its suitability for parallel processing.

무선 메쉬 네트워크에서 TCP 성능 향상 기법 (A TCP Performance Enhancement Scheme in Wireless Mesh Networks)

  • 이혜림;문일영
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1139-1145
    • /
    • 2010
  • 무선 메쉬 네트워크는 무선 인프라 환경에서 고정이나 이동 중에 모든 노드가 통신을 할 수 있는 다중 경로를 가지는 새로운 네트워크이다. 하지만 무선 메쉬 네트워크는 유선망과 달리 무선 매체를 사용하기 때문에 경로손실, 간섭, 핸드오프 등으로 높은 패킷 손실률을 보이고 TCP(Transport Control Protocol) 알고리즘은 무선 메쉬 네트워크의 패킷손실 원인을 네트워크 내의 혼잡으로 인식하기 때문에 TCP 혼잡제어 알고리즘(Congestion Control Algorithm)을 실행하게 된다. 따라서 본 논문에서는 무선 메쉬 네트워크 환경에 적응력을 가지도록 기존의 TCP 혼잡제어 알고리즘의 혼잡 윈도우 값을 노드의 이동에 따라 유연하게 조절하는 새로운 TCP 혼잡제어 알고리즘을 제안한다.

A NUMERICAL SCHEME WITH A MESH ON CHARACTERISTICS FOR THE CAUCHY PROBLEM FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS

  • Yoon, Dae-Ki;Kim, Hong-Joong;Hwang, Woon-Jae
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.459-466
    • /
    • 2009
  • In this paper, a numerical scheme is introduced to solve the Cauchy problem for one-dimensional hyperbolic equations. The mesh points of the proposed scheme are distributed along characteristics so that the solution on the stencil can be easily and accurately computed. This is very important in reducing errors of the scheme because many numerical errors are generated when the solution is estimated over grid points. In addition, when characteristics intersect, the proposed scheme combines corresponding grid points into one and assigns new characteristic to the point in order to improve computational efficiency. Numerical experiments on the inviscid Burgers' equation have been presented.

Radial Basis Function을 사용한 격자 변형에 대한 연구 (A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION)

  • 제소영;정성기;양영록;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

솔리드 STL 모델의 옵셋 방법 (Offset of STL Model Generated from Solid Model)

  • 김수진;양민양
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.202-211
    • /
    • 2005
  • This paper introduces and illustrates the results of a new method fer offsetting triangular mesh by moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two vectors with the smallest difference are joined repeatedly until the difference is smaller than allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap at the smooth edges, thereby making the mesh size uniform and the computation time short. In addition, this offsetting method is accurate at the sharp edges because the vertices are moved to the normal directions of faces and joined by the blend surface. The method is also useful for rapid prototyping and tool path generation if the triangular mesh is tessellated part of the solid models with curved surfaces and sharp edges. The suggested method and previous methods are implemented on a PC using C++ and illustrated using an OpenGL library.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

Unstructured Moving-Mesh Hydrodynamic Simulation

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • We present a new hydrodynamic simulation code based on the Voronoi tessellation for estimating the density precisely. The code employs both of Lagrangian and Eulerian description by adopting the movable mesh scheme, which is superior to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for all surfaces of each Voronoi cell so as to update the hydrodynamic states as well as to move current meshes. Besides, the IEM (incremental expanding method) is devised to compute the Voronoi tessellation to desired degree of speed, thereby the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

병렬화된 비정렬 격자계를 이용한 3차원 비정상 점성 유동 계산 기법 개발 (Computation of 3-Dimensional Unsteady Viscous Plows Using an Parallel Unstructured Mesh)

  • 김주성;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.18-24
    • /
    • 2003
  • In the present study, solution algorithms for the connotation of unsteady flows on an unstructured mesh me presented Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and suing analogy method for moving mesh are all considered and compared. Special treatments of suing analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating ing are compared with experimental data.

  • PDF