
IEIE Transactions on Smart Processing and Computing, vol. 4, no. 4, August 2015
http://dx.doi.org/10.5573/IEIESPC.2015.4.4.224 224

IEIE Transactions on Smart Processing and Computing

Real-time Full-view 3D Human Reconstruction using
Multiple RGB-D Cameras

Bumsik Yoon1, Kunwoo Choi2, Moonsu Ra2, and Whoi-Yul Kim2

1 Department of Visual Display, Samsung Electronics / Suwon, South Korea bsyoon@samsung.com
2 Department of Electronics and Computer Engineering, Hanyang University / Seoul, South Korea

{kwchoi, msna}@vision.hanyang.ac.kr, wykim@hanyang.ac.kr

* Corresponding Author: Whoi-Yul Kim

Received July 15, 2015; Revised August 5, 2015; Accepted August 24, 2015; Published August 31, 2015

* Short Paper

* Extended from a Conference: Preliminary results of this paper were presented at the ITC-CSCC, Summer 2015. The
present paper has been accepted by the editorial board through the regular reviewing process that confirms the original
contribution.

Abstract: This manuscript presents a real-time solution for 3D human body reconstruction with
multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D)
cameras, each located at approximately 90° from the next camera around a freely moving human
body. A single mesh is constructed from the captured point clouds by iteratively removing the
estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is
developed, recovering the 3D shape from various conditions, considering the direction of the
camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or
occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with
the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is
implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time
processing owing to its suitability for parallel processing.

Keywords: 3D reconstruction, RGB-D, Mesh construction, Virtual mirror

1. Introduction

Current advances in technology require three-dimen-
sional (3D) information in many daily life applications,
including multimedia, games, shopping, augmented-reality,
and many other areas. These applications analyze 3D
information and provide a more realistic experience for
users. Rapid growth of the 3D printer market also directs
aspects of practical use for 3D reconstruction data.
However, 3D reconstruction is still a challenging task.

The 3D reconstruction algorithms for given point
clouds can be classified according to spatial subdivision
[1]: surface-oriented algorithms [2, 3], which do not
distinguish between open and closed surfaces; and volume-
oriented algorithms [4, 5], which work in particular with
closed surfaces and are generally based on Delaunay
tetrahedralization of the given set of sample points.
Surface-oriented methods have advantages, such as the
ability to reuse the untouched depth map and to rapidly

reconstruct the fused mesh.
In this paper, 3D reconstruction is proposed by fusing

multiple 2.5D data, captured by multiple RGB/Depth
(RGB-D) cameras, specifically with the Microsoft Kinect
[6] device. The use of multiple capturing devices for
various applications means they can concurrently acquire
the image from various points of view. Examples of these
applications are motion capture systems, virtual mirrors,
and 3D telecommunications.

The approach proposed in this manuscript constructs a
mesh by removing the overlapping surfaces from the
boundaries. A similar approach was proposed by Alexiadis
et al. [7]. Meshes generated from the multiple RGB-D
cameras can introduce various noise problems, including
depth fluctuations during measurement, and holes caused by
the interference of infrared (IR) projections from the
multiple cameras. The proposed algorithm reduces these
issues, by considering the direction of the camera pose and
by analyzing various conditions of the captured point clouds.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 4, August 2015

225

The paper is organized as follows. Section 2 explains
the proposed algorithm for 3D reconstruction. Section 3
presents the implementation method of the algorithm.
Section 4 discusses the results of the experiment. Finally,
Section 5 concludes this manuscript.

2. 3D Reconstruction Algorithm

In the proposed scheme, RGB-D cameras are installed
at 90° angles from the adjacent cameras and at a distance
of 1 to 2m from the target. The camera parameters and
their initial positions are estimated beforehand. If any
subtle adjustment to the camera positions is required,
optional online calibration can be performed.

At the beginning, depth and RGB data from each
camera are captured concurrently in each thread. The
captured data are synchronized for subsequent processing.
The depth data go through a bilateral filter [8] and are
transformed into the point clouds using the calibrated
intrinsic depth camera parameters. Then, the point clouds
are used to generate cell-based meshes, following the
removal of background points.

After the cell generation, each point cloud is
transformed to global coordinates with calibrated extrinsic
parameters. The redundancies between the point clouds are
removed after the transformation by the iterative boundary
removal algorithm, and the resultant meshes are clipped
together.

The RGB data is transformed to depth coordinates, and
the brightness level is adjusted by investigating the
intensity of the overlapped regions. Finally, the calibrated
RGB data are rendered with the triangulated mesh.

Fig. 1 shows a block diagram of the overall system.
Every color of the module represents a CPU thread, and
the bold and thin lines indicated in the figure show the
flow of data and parameters, respectively.

2.1 Calibrations
A set of checkerboard images is captured from

RGB/Depth cameras to estimate the intrinsic and extrinsic
parameters, for each camera, using a Matlab camera
calibration toolbox. For the depth camera calibration, IR
images are used instead of the depth images, because the
corner points of the checkerboard cannot be detected in a
depth image.

In addition to the depth camera parameters, the shifting
error between the IR and depth [9] is considered, because
the mapped color usually does not match the point cloud,
as shown in Fig. 2(c). Vertices of a colored cube

(50×50×50cm) from the IR and depth images are found to
estimate the shifting value. The intersection point of the
three edges in the IR image corresponds to the vertex of
the cube in the depth image. The vertex can be found via
the intersection of the estimated three planes. The found
offset is applied in the color-to-depth transformation
module.

Usually, the extrinsic parameters between two cameras
can be estimated by finding the corresponding corners of
the checkerboard images from the cameras. However, if
the angle between the two cameras is too large, this
method is difficult to use due to the narrow common view
angle. Therefore, a multi-Kinect registration method is
proposed that uses a cube for the calibration object. It
needs only one pair of RGB/depth images per RGB-D
camera in one scene.

Fig. 2(e) shows the edge vectors and the vertex,
identified by the colors of the intersecting three planes for
one camera. The found edge vectors are transformed to the
coordinates of a virtual cube, which has the same size as
the real cube so as to minimize the mean square error of
the distances for four vertices viewable from each camera.
The registered cube and the estimated pose of the depth
cameras are shown in Fig. 2(f), and the aggregated point
cloud is given in Fig. 2(g).

Online calibration for the extrinsic parameters can be
performed if a slight change in the camera positions occurs
by some accidental movement. An iterative closest point
(ICP) [10] algorithm could be applied for this purpose.
However, there are two kinds of difficulty with traditional
ICP aligning all the point clouds in the proposed system.
First, traditional ICP works only in a pairwise manner.
Second, the point clouds do not have sufficient
overlapping regions to estimate the alignment parameters.

To resolve these problems, a combined solution of
generalized Procrustes analysis (GPA) [11] and sparse ICP
(S-ICP) [12] is adopted. The basic concept is as follows.

1. Extract the common centroid set that would become
the target of S-ICP for all the point clouds.

2. Apply S-ICP on the centroid set for each point cloud.

The difference between GPA presented by Toldo et al.

[11] and our proposed method is that only left and right
point clouds are used for centroid extraction, as seen in Fig.

Fig. 1. 3D reconstruction block diagram.

Fig. 2. Calibration process (a) RGB image, (b) Depth
image, (c, d) RGB-D mapped image before and after IR-
depth shift correction, (e) Edge vectors from the point
cloud of a cube, (f) Multi-Kinect registration result, (g)
Point cloud aggregation.

Yoon et al.: Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

226

3. The direction of the arrow indicates its closest vertex in
the neighboring point cloud, and the black dot indicates its
centroid.

S-ICP is repeatedly performed until all of the
maximum square residual errors of the pairwise
registration become less than a sufficiently low value. Fig.
4 shows the transition of the errors when three of four
cameras are initially misaligned by about 10cm and at 5°
to the arbitrary direction.

2.2 Cell Based Mesh
A cell-based mesh (CBM) is used for redundancy

removal, rather than the unordered triangle-based mesh,
because CBM is quick to generate, and it is also feasible to
utilize the grid property of the depth map. The projected
location of the cell and its boundary condition can be
examined rapidly, and this is used frequently in the
proposed algorithms.

A cell is constructed if all four edges surrounding the
rectangular area in the depth map grid are within the
Euclidean distance threshold mD . During the boundary
removal stage, the center of the cell is used, which is
calculated by averaging the positions of the four
neighboring vertices around the cell (Fig. 5(a)). The
normal of each cell is also generated by calculating the

cross product of two vectors of the three vertices around
the cell.

The boundary cell is simply defined if the cell does not
have any surrounding cells sharing an edge. The direction
of the boundary cell is defined as the outward direction
from the center to the boundary. For horizontal/vertical
boundary cells, the direction is calculated as the weighted
sum of vectors from the center to the vertices of the
boundary edge (Figs. 5(b) and (c)):

 ()2 3j j j jv c v c= − − −b j (1)

 ()3 2j j j jv c v c− − .

For the diagonal boundary cell, the direction is

calculated as the weighted sum of vectors from the center
to the diagonal vertices (Fig. 5(d)):

 ()2 3 1 2j j j jv v v v= − − −b j (2)

 ()1 2 2 3j j j jv v v v− − .

There are undecidable one-way directional boundary

cells, such as a thin line or a point cell. These cells are
categorized as non-directional boundary cells and are dealt
with accordingly.

2.3 Redundant Boundary Cell Removal
The transformed cells may have redundant surfaces

that overlap surfaces from other camera views. The
redundant cells are removed by the redundant boundary
cell removal (RBCR) algorithm. RBCR utilizes the
direction of the virtual camera ev (Fig. 6), which is the
middle view of its neighboring camera. Using this
direction, we can effectively estimate the redundant
surfaces, minimizing the clipping area. It is also used as
the projection axis for 2D Delaunay triangulation.

Let kM be the cell mesh generated by camera k, let

,k jC be the jth cell in kM , and let ,k jc be the center of

cell ,k jC . The index k is labeled in the order of circular

direction. Assuming that ,k jC in kM is a boundary cell, it

is deemed redundant if a corresponding 1,k mC + can be
found that minimizes the projective distance, pd , with the

Fig. 3. Mutual neighboring closest points (a, b, c) Valid
cases, (d, e) Invalid cases.

Fig. 4. Registration errors.

Fig. 5. Various cell types (a) No boundary cells, (b, c, d)
Examples of directional boundary cells.

Fig. 6. Camera positions.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 4, August 2015

227

constraint that the Euclidean distance (ad) between the
center of the cells should be smaller than the maximum
distance, aD :

{ }
()

1

*
1,

| < , \
= argmin

a a k

k m p
C C d D C M

C d
+

+
∈ ∈

 (3)

The projective distance pd is defined as follows:

 1, ,| () |p a k m k jd d c c+= − − ⋅ev (4)

where ev is found by spherical linear interpolation, or
“slerp” [13], with angle Ω between camera direction ek
and 1+ek :

()
() ()1

sin / 2
sin +

Ω
= +

Ω
e e ev k k . (5)

To find *C , a projection search method is adopted, i.e.,

,k jc is projected to the target view of 1k+M , and the cells

of 1k+M , in the fixed-size window centered on the
projected ,k jc , are tested for the conditions.

Once *C is found, the corresponding ,k jC is
considered a potentially redundant cell. The additional
conditions are tested to decide if the cell is truly redundant,
and hence removable.

If the found *C is not a boundary cell and the normal
is in the same direction, it is redundant because ,k jC is on

or under the surface, not the cell of a thin object. Or, if *C
is a directional boundary cell, ,k jC is redundant when

,k jC is close enough to *C so that pd is smaller than the

maximum projective distance ()pD , and the boundary
directions are not in the same direction. This could be
regarded as the depth test in ray-tracing for the direction of
ev of the boundary cell.

The way mutual directionality is decided is by the sign
of the inner product for the two directions.

In one loop, RBCR is performed through all ks, for the
outermost boundary cells in kM w.r.t. 1k+M , and vice
versa, and is applied iteratively until no cells are removed.

2.4 Boundary Clipping
In this stage, any boundary cell in kM within distance

aD from the boundary of 1k+M is collected with the same
search method of RBCR.

The collected cells are disintegrated to the vertices, and
are orthogonally projected to the plane of the virtual
camera. Then, the projected points are triangulated via 2D
Delaunay algorithm.

2.5 Triangulation
Except for the triangulated cells in the previous

boundary clipping stage, all the other cells are simply
triangulated by dividing the cell into the two triangles. The
shorter diagonal edge is selected for triangulation.

2.6 Brightness Adjustment
Although the Kinect device provides an auto-exposure

functionality, it is not sufficient to tune the multiple RGB
cameras. The brightness is tuned online by multiplying the
correction factor. Each factor is calculated by comparing
the intensity of the overlapped region with the mean
intensity of all overlapped regions. The overlapped regions
can be directly extracted from the RBCR operation.

The propagation error from all the cameras is
distributed to each correction factor so that the overall gain
is 1.

3. Implementation

Among the modules of Fig. 1, the bilateral filter
through the position transform, the redundancy removal,
and color-to-depth transform modules are implemented
under the Compute Unified Device Architecture (CUDA)
[14]. The rendering module is implemented with OpenGL
and all other modules with the CPU.

Fig. 7 shows all of the implemented CUDA kernels that
correspond to the logical modules in Fig. 1.

bilateralKernel is configured to filter one depth with
one thread each. The radius and the standard deviation of
the spatial Gaussian kernel were set to 5 pixels and 4.5
pixels, respectively. The standard deviation of the intensity
(i.e. depth value) Gaussian kernel was set to 60mm.

pcdKernel generates point cloud back-projecting of the
depth pixels with the calibrated intrinsic parameters. The
kernel also eliminates the background depth pixels with a
frustum of near 0.5m and far 2.5m.

The cell generation module consists of three kernels.

Fig. 7. CUDA kernel composition.

Yoon et al.: Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

228

gridKernel marks the valid vertices within distance mD .
As the neighboring relationship is needed to check the
validity, four vertices are marked with an atomicOr barrier
function if they turn out to be valid. reduceKernel reduces
the grid vertices to a reduced stream, generating the
indices for the marked vertices. cellKernel constructs the
cell information if all of the neighboring vertices are valid.
The constructed cell information includes both the normal
and the center of the cell.

The positional transformation is done in taKernel. It
includes vertex, normal, center transform and the cell
projection. Although the kernel could be implemented with
a general transform kernel, as the transforms use the same
parameter, it is more efficient to process them all at once
by reducing the kernel launch time, rather than by calling
the general purpose kernel multiple times.

The RBCR algorithm is designed to run concurrently
for the four pairs of the mesh by using the CUDA stream
feature, not using the CPU thread, because the status of the
cells needs to be synchronized for every loop. rbKernel
just removes the first outermost boundary cells because the
measured boundary depth tends to be considerably
inaccurate.

The RBCR loop runs with the two CUDA kernels.
• rrKernel: Searches (3) and marks the flag for the cells

to be removed.
• updateKernel: Removes all the marked cells and returns

the number of removed cells.

The two-kernel approach makes the mesh maintain the

consistency of the boundary condition in a loop. The
search function in rrKernel is designed to use 32
concurrent threads per cell for a 16×16 search window. It
leads to loop 8 times for one complete search, and to use
32 elements of shared memory for intermediate storage of
the partial reduction. The grid size is defined as the
number of cells (cN) divided by the number of cells per
block (cpbN). cpbN is tuned to 16 as a result of
performance tuning that maximizes the speed.

The synchronization of the cell status is done
automatically when the remove counter is copied from the
device to the host with the default stream.

To accelerate RBCR and keep a constant speed, the
loop is terminated after the eighth iteration (max_loop=8)
and one more search is done for all the remaining cells,
including the non-boundary cells.

The boundary cells of the RBCR results are collected
with collectKernel by a method similar to rrKernel but
without the iterative loop.

colorKernel maps the color coordinates to the depth
coordinates followed by correction of the radial, tangential
distortions, and IR-depth shifting error using the calibrated
parameters. The operation is performed only for the
reduced cells.

The boundary clipping module runs on CPU threads
other than the RBCR thread to reduce the waiting time for
RBCR. The Delaunay triangulation (DT) algorithm is
implemented with the Computational Geometry
Algorithms Library (CGAL) [15]. As DT generates the
convex set of triangles, long-edged triangles (tD>) are

eliminated after the triangulation.
We adapt the sparse ICP module [16] using an external

kd-tree for mutual neighboring of closest points. The
point-to-point 0.4 -ICP is used for optimization, with max
inner and outer iterations of 1 and 20, respectively.

The parameter values used in this paper are given in
Table 1.

The resolutions for input depth and RGB are both
640×480, and the equipment used for the implementation
was a desktop PC with an Intel i7 3.6GHz core and an
NVidia GTX970 graphics card.

4. Results

Fig. 8 gives the performance analysis results of NVidia
Nsight for the implemented kernels. As expected, it shows
that rrKernel is computationally the most expensive kernel,
as expected. The timeline shows that the speed of the
overall system is approximately 21fps. The latencies
measured at the end of each module are described in Table
2.

Fig. 9(a) shows various views of the reconstructed
human mesh that can be seen on the run. The bottom row
is the color map of the reconstructed mesh, where color
represents the mesh from the corresponding camera. The
thin purple line indicates the clipped area. Compared to the
original unprocessed mesh in Fig. 9(c), we can see that the

Table 1. Experiment Parameters.

Parameters Values

mD (max cell edge) 2cm

aD (max Euclidean distance) 3cm

pD (max projected distance) 0.5cm

tD (max triangle edge length) 3cm

Table 2. Latencies.

Modules Latencies
Sync 16.2ms

Cell Gen. 11.2ms
Pos. Trfm. 8.1ms

Redun. Rem. 26.5ms
Triangulation 24.3ms

Total 86.3ms

Fig. 8. Performance analysis.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 4, August 2015

229

resultant mesh has no redundancies and is clipped cleanly.
Fig. 9(b) is the result of RBCR when max_loop is equal to
24, showing almost no difference when max_loop is equal
to 8.

Fig. 10 gives the result of the brightness adjustment
showing that the mismatched color in the cloth is
effectively corrected.

5. Conclusion

In this paper, it is shown that the proposed algorithm
and the implementation method could reconstruct a 3D
mesh effectively, supporting a 360-degree viewing
direction with multiple consumer RGB-D cameras. The
proposed calibration method, which uses a cube as a
calibration object, could estimate the color/depth camera
parameters and the global position of the cameras
effectively, accommodated by the online calibration
method that exploits mutual neighboring closest points,
and a sparse ICP algorithm. The constructed mesh had no
redundancies after application of the proposed algorithm,
which iteratively removes the estimated redundant regions
from the boundary of the mesh. In addition, the proposed
3D reconstruction system could adjust the mismatched
brightness between the RGB-D cameras by using the
collateral overlapping region of the redundancy removal
algorithm. The overall speed for implementation was 21fps

with a latency of 86.3ms, which is sufficient for real-time
processing.

References

[1] M. Botsch, et al., Polygon Mesh Processing, AK

Peters, London, 2010. Article (CrossRef Link)
[2] H. Hoppe, et al., “Surface reconstruction from

unorganized points,” SIGGRAPH ’92, 1992. Article
(CrossRef Link)

[3] R. Mencl and H. Müller. Graph–based surface
reconstruction using structures in scattered point sets.
In Proceedings of CGI ’98 (Computer Graphics
International), pp. 298–311, June, 1998. Article
(CrossRef Link)

[4] B. Curless and M. Levoy, “A volumetric method for
building complex models from range images,”
SIGGRAPH ’96, 1996. Article (CrossRef Link)

[5] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson
Surface Reconstruction,” Proc. Symp. Geometry
Processing, 2006. Article (CrossRef Link)

[6] Microsoft Kinect Article (CrossRef Link)
[7] D. Alexiadis, D. Zarpalas, and P. Daras, “Real-time,

full 3-D reconstruction of moving foreground objects
from mul-tiple consumer depth cameras,” IEEE
Trans on Multimedia, vol. 15, pp. 339–358, Feb.
2013. Article (CrossRef Link)

[8] C. Tomasi and R. Manduchi, “Bilateral filtering for

Fig. 9. Result of various views (a) max_loop = 8, (b) max_loop = 24, (c) The original.

Fig. 10. Result of brightness adjustment (a) before, (b) after.

http://dx.doi.org/10.1201/b10688
http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf
http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf
http://dl.acm.org/citation.cfm?id=792945
http://dl.acm.org/citation.cfm?id=792945
http://dx.doi.org/10.1145/237170.237269
http://dl.acm.org/citation.cfm?id=1281965
http://www.microsoft.com/en-us/kinectforwindows
http://dx.doi.org/10.1109/TMM.2012.2229264

Yoon et al.: Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

230

gray and color images,” in Proc. of the ICCV, 1998.
Article (CrossRef Link)

[9] J. Smisek, M. Jancosek, and T. Pajdla, “3D with
Kinect,” 2011 ICCV Workshops, pp. 1154-1160, Nov.
2011. Article (CrossRef Link)

[10] P. Besl and N. McKay, “A Method for Registration
of 3-D Shapes,” IEEE Trans. Patten Analysis and
Machine Intelligence, vol. 14, pp. 239-256, 1992.
Article (CrossRef Link)

[11] R. Toldo, A. Beinat, and F. Crosilla, “Global
registration of multiple point clouds embedding the
generalized procrustes analysis into an ICP
framework,” in 3DPVT 2010 Conf., Paris, May 17-
20, 2010. Article (CrossRef Link)

[12] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse
Iterative Closest Point,” Computer Graphics Forum,
vol. 32, no. 5, pp. 1–11, 2013. Article (CrossRef
Link)

[13] K. Shoemake, “Animating rotation with quaternion
curves,” in Proc. of the SIGGRAPH ’85, 1985, pp.
245-254. Article (CrossRef Link)

[14] NVidia CUDA Article (CrossRef Link)
[15] CGAL Article (CrossRef Link)
[16] Sparse ICP Article (CrossRef Link)

Bumsik Yoon received his BSc and
MSc in Electrical Engineering from
Yonsei University, Korea, in 1997 and
2000, respectively. He is a senior
researcher at Samsung Electronics.
Currently, he is pursuing his PhD at
Hanyang University, Korea. His
research interests include 3D

reconstruction, pedestrian detection, time-of-flight and
computer graphics.

Kunwoo Choi received his BSc in
Electronics Engineering at Konkuk
University, Korea, in 2014. He is
currently pursuing an MSc in
Electronics and Computer Engineering
at Hanyang University. His research
interests include depth acquisition and
vehicle vision systems.

Moonsu Ra received his BSc and
MSc at Hanyang University, Korea, in
2011 and 2013, respectively. He is
currently pursuing his PhD at the same
university. His research interests
include visual surveillance, face
tracking and identification, and video
synopsis.

Whoi-Yul Kim received his PhD in
Electronics Engineering from Purdue
University, West Lafayette, Indiana, in
1989. From 1989 to 1994, he was with
the Erick Johansson School of
Engineering and Computer Science at
the University of Texas at Dallas. He
joined Hanyang University in 1994,

where he is now a professor in the Department of
Electronics and Computer Engineering. His research
interests include visual surveillance, face tracking and
identification, and video synopsis.

Copyrights © 2015 The Institute of Electronics and Information Engineers

http://dx.doi.org/10.1109/iccv.1998.710815
http://dx.doi.org/10.1109/ICCVW.2011.6130380
http://dx.doi.org/10.1109/34.121791
https://www.researchgate.net/publication/228959196_Global_registration_of_multiple_point_clouds_embedding_the_Generalized_Procrustes_Analysis_into_an_ICP_framework
http://dx.doi.org/10.1111/cgf.12178
http://dx.doi.org/10.1111/cgf.12178
http://dx.doi.org/10.1145/325334.325242
http://www.nvidia.com/object/cuda_home_new.html
http://www.cgal.org/
http://lgg.epfl.ch/sparseicp

