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Abstract: This manuscript presents a real-time solution for 3D human body reconstruction with 
multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D) 
cameras, each located at approximately 90° from the next camera around a freely moving human 
body. A single mesh is constructed from the captured point clouds by iteratively removing the 
estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is 
developed, recovering the 3D shape from various conditions, considering the direction of the 
camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or 
occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with 
the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is 
implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time 
processing owing to its suitability for parallel processing.     
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1. Introduction 

Current advances in technology require three-dimen-
sional (3D) information in many daily life applications, 
including multimedia, games, shopping, augmented-reality, 
and many other areas. These applications analyze 3D 
information and provide a more realistic experience for 
users. Rapid growth of the 3D printer market also directs 
aspects of practical use for 3D reconstruction data. 
However, 3D reconstruction is still a challenging task.  

The 3D reconstruction algorithms for given point 
clouds can be classified according to spatial subdivision 
[1]: surface-oriented algorithms [2, 3], which do not 
distinguish between open and closed surfaces; and volume-
oriented algorithms [4, 5], which work in particular with 
closed surfaces and are generally based on Delaunay 
tetrahedralization of the given set of sample points. 
Surface-oriented methods have advantages, such as the 
ability to reuse the untouched depth map and to rapidly 

reconstruct the fused mesh. 
In this paper, 3D reconstruction is proposed by fusing 

multiple 2.5D data, captured by multiple RGB/Depth 
(RGB-D) cameras, specifically with the Microsoft Kinect 
[6] device. The use of multiple capturing devices for 
various applications means they can concurrently acquire 
the image from various points of view. Examples of these 
applications are motion capture systems, virtual mirrors, 
and 3D telecommunications.  

The approach proposed in this manuscript constructs a 
mesh by removing the overlapping surfaces from the 
boundaries. A similar approach was proposed by Alexiadis 
et al. [7]. Meshes generated from the multiple RGB-D 
cameras can introduce various noise problems, including 
depth fluctuations during measurement, and holes caused by 
the interference of infrared (IR) projections from the 
multiple cameras. The proposed algorithm reduces these 
issues, by considering the direction of the camera pose and 
by analyzing various conditions of the captured point clouds. 
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The paper is organized as follows. Section 2 explains 
the proposed algorithm for 3D reconstruction. Section 3 
presents the implementation method of the algorithm. 
Section 4 discusses the results of the experiment. Finally, 
Section 5 concludes this manuscript. 

2. 3D Reconstruction Algorithm 

In the proposed scheme, RGB-D cameras are installed 
at 90° angles from the adjacent cameras and at a distance 
of 1 to 2m from the target. The camera parameters and 
their initial positions are estimated beforehand. If any 
subtle adjustment to the camera positions is required, 
optional online calibration can be performed. 

At the beginning, depth and RGB data from each 
camera are captured concurrently in each thread. The 
captured data are synchronized for subsequent processing. 
The depth data go through a bilateral filter [8] and are 
transformed into the point clouds using the calibrated 
intrinsic depth camera parameters. Then, the point clouds 
are used to generate cell-based meshes, following the 
removal of background points.  

After the cell generation, each point cloud is 
transformed to global coordinates with calibrated extrinsic 
parameters. The redundancies between the point clouds are 
removed after the transformation by the iterative boundary 
removal algorithm, and the resultant meshes are clipped 
together. 

The RGB data is transformed to depth coordinates, and 
the brightness level is adjusted by investigating the 
intensity of the overlapped regions. Finally, the calibrated 
RGB data are rendered with the triangulated mesh. 

Fig. 1 shows a block diagram of the overall system. 
Every color of the module represents a CPU thread, and 
the bold and thin lines indicated in the figure show the 
flow of data and parameters, respectively. 

2.1 Calibrations 
A set of checkerboard images is captured from 

RGB/Depth cameras to estimate the intrinsic and extrinsic 
parameters, for each camera, using a Matlab camera 
calibration toolbox. For the depth camera calibration, IR 
images are used instead of the depth images, because the 
corner points of the checkerboard cannot be detected in a 
depth image.  

In addition to the depth camera parameters, the shifting 
error between the IR and depth [9] is considered, because 
the mapped color usually does not match the point cloud, 
as shown in Fig. 2(c). Vertices of a colored cube 

(50×50×50cm) from the IR and depth images are found to 
estimate the shifting value. The intersection point of the 
three edges in the IR image corresponds to the vertex of 
the cube in the depth image. The vertex can be found via 
the intersection of the estimated three planes. The found 
offset is applied in the color-to-depth transformation 
module. 

Usually, the extrinsic parameters between two cameras 
can be estimated by finding the corresponding corners of 
the checkerboard images from the cameras. However, if 
the angle between the two cameras is too large, this 
method is difficult to use due to the narrow common view 
angle. Therefore, a multi-Kinect registration method is 
proposed that uses a cube for the calibration object. It 
needs only one pair of RGB/depth images per RGB-D 
camera in one scene. 

Fig. 2(e) shows the edge vectors and the vertex, 
identified by the colors of the intersecting three planes for 
one camera. The found edge vectors are transformed to the 
coordinates of a virtual cube, which has the same size as 
the real cube so as to minimize the mean square error of 
the distances for four vertices viewable from each camera. 
The registered cube and the estimated pose of the depth 
cameras are shown in Fig. 2(f), and the aggregated point 
cloud is given in Fig. 2(g). 

Online calibration for the extrinsic parameters can be 
performed if a slight change in the camera positions occurs 
by some accidental movement. An iterative closest point 
(ICP) [10] algorithm could be applied for this purpose. 
However, there are two kinds of difficulty with traditional 
ICP aligning all the point clouds in the proposed system. 
First, traditional ICP works only in a pairwise manner. 
Second, the point clouds do not have sufficient 
overlapping regions to estimate the alignment parameters. 

To resolve these problems, a combined solution of 
generalized Procrustes analysis (GPA) [11] and sparse ICP 
(S-ICP) [12] is adopted. The basic concept is as follows. 

1. Extract the common centroid set that would become 
the target of S-ICP for all the point clouds.  

2. Apply S-ICP on the centroid set for each point cloud. 
 
The difference between GPA presented by Toldo et al. 

[11] and our proposed method is that only left and right 
point clouds are used for centroid extraction, as seen in Fig. 

Fig. 1. 3D reconstruction block diagram. 

 

Fig. 2. Calibration process (a) RGB image, (b) Depth 
image, (c, d) RGB-D mapped image before and after IR-
depth shift correction, (e) Edge vectors from the point 
cloud of a cube, (f) Multi-Kinect registration result, (g) 
Point cloud aggregation. 
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3. The direction of the arrow indicates its closest vertex in 
the neighboring point cloud, and the black dot indicates its 
centroid. 

S-ICP is repeatedly performed until all of the 
maximum square residual errors of the pairwise 
registration become less than a sufficiently low value. Fig. 
4 shows the transition of the errors when three of four 
cameras are initially misaligned by about 10cm and at 5° 
to the arbitrary direction.  

2.2 Cell Based Mesh 
A cell-based mesh (CBM) is used for redundancy 

removal, rather than the unordered triangle-based mesh, 
because CBM is quick to generate, and it is also feasible to 
utilize the grid property of the depth map. The projected 
location of the cell and its boundary condition can be 
examined rapidly, and this is used frequently in the 
proposed algorithms.  

A cell is constructed if all four edges surrounding the 
rectangular area in the depth map grid are within the 
Euclidean distance threshold mD . During the boundary 
removal stage, the center of the cell is used, which is 
calculated by averaging the positions of the four 
neighboring vertices around the cell (Fig. 5(a)). The 
normal of each cell is also generated by calculating the 

cross product of two vectors of the three vertices around 
the cell. 

The boundary cell is simply defined if the cell does not 
have any surrounding cells sharing an edge. The direction 
of the boundary cell is defined as the outward direction 
from the center to the boundary. For horizontal/vertical 
boundary cells, the direction is calculated as the weighted 
sum of vectors from the center to the vertices of the 
boundary edge (Figs. 5(b) and (c)): 

 
 ( )2 3j j j jv c v c= − − −b j   (1) 

                             ( )3 2j j j jv c v c− − . 

 
For the diagonal boundary cell, the direction is 

calculated as the weighted sum of vectors from the center 
to the diagonal vertices (Fig. 5(d)): 

 
 ( )2 3 1 2j j j jv v v v= − − −b j      (2) 

                            ( )1 2 2 3j j j jv v v v− − . 

 
There are undecidable one-way directional boundary 

cells, such as a thin line or a point cell. These cells are 
categorized as non-directional boundary cells and are dealt 
with accordingly. 

2.3 Redundant Boundary Cell Removal 
The transformed cells may have redundant surfaces 

that overlap surfaces from other camera views. The 
redundant cells are removed by the redundant boundary 
cell removal (RBCR) algorithm. RBCR utilizes the 
direction of the virtual camera ev  (Fig. 6), which is the 
middle view of its neighboring camera. Using this 
direction, we can effectively estimate the redundant 
surfaces, minimizing the clipping area. It is also used as 
the projection axis for 2D Delaunay triangulation.  

Let kM  be the cell mesh generated by camera k, let 

,k jC  be the jth cell in kM , and let ,k jc  be the center of 

cell ,k jC . The index k is labeled in the order of circular 

direction. Assuming that ,k jC  in kM  is a boundary cell, it 

is deemed redundant if a corresponding 1,k mC +  can be 
found that minimizes the projective distance, pd , with the 

Fig. 3. Mutual neighboring closest points (a, b, c) Valid
cases, (d, e) Invalid cases. 

 

Fig. 4. Registration errors. 
 

Fig. 5. Various cell types (a) No boundary cells, (b, c, d) 
Examples of directional boundary cells. 

Fig. 6. Camera positions. 
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constraint that the Euclidean distance ( ad ) between the 
center of the cells should be smaller than the maximum 
distance, aD : 
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The projective distance pd  is defined as follows: 
 

 1, ,| ( ) |p a k m k jd d c c+= − − ⋅ev                    (4) 
 

where ev  is found by spherical linear interpolation, or 
“slerp” [13], with angle Ω  between camera direction ek  
and 1+ek :  
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To find *C , a projection search method is adopted, i.e., 

,k jc  is projected to the target view of 1k+M , and the cells 

of 1k+M , in the fixed-size window centered on the 
projected ,k jc , are tested for the conditions.  

Once *C  is found, the corresponding ,k jC  is 
considered a potentially redundant cell. The additional 
conditions are tested to decide if the cell is truly redundant, 
and hence removable. 

If the found *C  is not a boundary cell and the normal 
is in the same direction, it is redundant because ,k jC  is on 

or under the surface, not the cell of a thin object. Or, if *C  
is a directional boundary cell, ,k jC  is redundant when 

,k jC  is close enough to *C  so that pd  is smaller than the 

maximum projective distance ( )pD , and the boundary 
directions are not in the same direction. This could be 
regarded as the depth test in ray-tracing for the direction of 
ev  of the boundary cell. 

The way mutual directionality is decided is by the sign 
of the inner product for the two directions. 

In one loop, RBCR is performed through all ks, for the 
outermost boundary cells in kM  w.r.t. 1k+M , and vice 
versa, and is applied iteratively until no cells are removed. 

2.4 Boundary Clipping 
In this stage, any boundary cell in kM  within distance 

aD  from the boundary of 1k+M  is collected with the same 
search method of RBCR.  

The collected cells are disintegrated to the vertices, and 
are orthogonally projected to the plane of the virtual 
camera. Then, the projected points are triangulated via 2D 
Delaunay algorithm. 

2.5 Triangulation 
Except for the triangulated cells in the previous 

boundary clipping stage, all the other cells are simply 
triangulated by dividing the cell into the two triangles. The 
shorter diagonal edge is selected for triangulation. 

2.6 Brightness Adjustment 
Although the Kinect device provides an auto-exposure 

functionality, it is not sufficient to tune the multiple RGB 
cameras. The brightness is tuned online by multiplying the 
correction factor. Each factor is calculated by comparing 
the intensity of the overlapped region with the mean 
intensity of all overlapped regions. The overlapped regions 
can be directly extracted from the RBCR operation.  

The propagation error from all the cameras is 
distributed to each correction factor so that the overall gain 
is 1.  

3. Implementation 

Among the modules of Fig. 1, the bilateral filter 
through the position transform, the redundancy removal, 
and color-to-depth transform modules are implemented 
under the Compute Unified Device Architecture (CUDA) 
[14]. The rendering module is implemented with OpenGL 
and all other modules with the CPU. 

Fig. 7 shows all of the implemented CUDA kernels that 
correspond to the logical modules in Fig. 1. 

bilateralKernel is configured to filter one depth with 
one thread each. The radius and the standard deviation of 
the spatial Gaussian kernel were set to 5 pixels and 4.5 
pixels, respectively. The standard deviation of the intensity 
(i.e. depth value) Gaussian kernel was set to 60mm. 

pcdKernel generates point cloud back-projecting of the 
depth pixels with the calibrated intrinsic parameters. The 
kernel also eliminates the background depth pixels with a 
frustum of near 0.5m and far 2.5m. 

The cell generation module consists of three kernels. 

Fig. 7. CUDA kernel composition. 
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gridKernel marks the valid vertices within distance mD . 
As the neighboring relationship is needed to check the 
validity, four vertices are marked with an atomicOr barrier 
function if they turn out to be valid. reduceKernel reduces 
the grid vertices to a reduced stream, generating the 
indices for the marked vertices. cellKernel constructs the 
cell information if all of the neighboring vertices are valid. 
The constructed cell information includes both the normal 
and the center of the cell.  

The positional transformation is done in taKernel. It 
includes vertex, normal, center transform and the cell 
projection. Although the kernel could be implemented with 
a general transform kernel, as the transforms use the same 
parameter, it is more efficient to process them all at once 
by reducing the kernel launch time, rather than by calling 
the general purpose kernel multiple times. 

The RBCR algorithm is designed to run concurrently 
for the four pairs of the mesh by using the CUDA stream 
feature, not using the CPU thread, because the status of the 
cells needs to be synchronized for every loop. rbKernel 
just removes the first outermost boundary cells because the 
measured boundary depth tends to be considerably 
inaccurate. 

The RBCR loop runs with the two CUDA kernels. 
• rrKernel: Searches (3) and marks the flag for the cells 

to be removed. 
• updateKernel: Removes all the marked cells and returns 

the number of removed cells. 
 
The two-kernel approach makes the mesh maintain the 

consistency of the boundary condition in a loop. The 
search function in rrKernel is designed to use 32 
concurrent threads per cell for a 16×16 search window. It 
leads to loop 8 times for one complete search, and to use 
32 elements of shared memory for intermediate storage of 
the partial reduction. The grid size is defined as the 
number of cells ( cN ) divided by the number of cells per 
block ( cpbN ). cpbN  is tuned to 16 as a result of 
performance tuning that maximizes the speed. 

The synchronization of the cell status is done 
automatically when the remove counter is copied from the 
device to the host with the default stream. 

To accelerate RBCR and keep a constant speed, the 
loop is terminated after the eighth iteration (max_loop=8) 
and one more search is done for all the remaining cells, 
including the non-boundary cells. 

The boundary cells of the RBCR results are collected 
with collectKernel by a method similar to rrKernel but 
without the iterative loop. 

colorKernel maps the color coordinates to the depth 
coordinates followed by correction of the radial, tangential 
distortions, and IR-depth shifting error using the calibrated 
parameters. The operation is performed only for the 
reduced cells.  

The boundary clipping module runs on CPU threads 
other than the RBCR thread to reduce the waiting time for 
RBCR. The Delaunay triangulation (DT) algorithm is 
implemented with the Computational Geometry 
Algorithms Library (CGAL) [15]. As DT generates the 
convex set of triangles, long-edged triangles ( tD> ) are 

eliminated after the triangulation. 
We adapt the sparse ICP module [16] using an external 

kd-tree for mutual neighboring of closest points. The 
point-to-point 0.4 -ICP is used for optimization, with max 
inner and outer iterations of 1 and 20, respectively. 

The parameter values used in this paper are given in 
Table 1. 

The resolutions for input depth and RGB are both 
640×480, and the equipment used for the implementation 
was a desktop PC with an Intel i7 3.6GHz core and an 
NVidia GTX970 graphics card. 

4. Results 

Fig. 8 gives the performance analysis results of NVidia 
Nsight for the implemented kernels. As expected, it shows 
that rrKernel is computationally the most expensive kernel, 
as expected. The timeline shows that the speed of the 
overall system is approximately 21fps. The latencies 
measured at the end of each module are described in Table 
2. 

Fig. 9(a) shows various views of the reconstructed 
human mesh that can be seen on the run. The bottom row 
is the color map of the reconstructed mesh, where color 
represents the mesh from the corresponding camera. The 
thin purple line indicates the clipped area. Compared to the 
original unprocessed mesh in Fig. 9(c), we can see that the 

Table 1. Experiment Parameters.

Parameters Values 

mD  (max cell edge) 2cm 

aD  (max Euclidean distance) 3cm 

pD  (max projected distance) 0.5cm 

tD  (max triangle edge length) 3cm 

 
Table 2. Latencies. 

Modules Latencies 
Sync 16.2ms 

Cell Gen. 11.2ms 
Pos. Trfm. 8.1ms 

Redun. Rem. 26.5ms 
Triangulation 24.3ms 

Total 86.3ms 
 

Fig. 8. Performance analysis. 
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resultant mesh has no redundancies and is clipped cleanly. 
Fig. 9(b) is the result of RBCR when max_loop is equal to 
24, showing almost no difference when max_loop is equal 
to 8. 

Fig. 10 gives the result of the brightness adjustment 
showing that the mismatched color in the cloth is 
effectively corrected.  

5. Conclusion 

In this paper, it is shown that the proposed algorithm 
and the implementation method could reconstruct a 3D 
mesh effectively, supporting a 360-degree viewing 
direction with multiple consumer RGB-D cameras. The 
proposed calibration method, which uses a cube as a 
calibration object, could estimate the color/depth camera 
parameters and the global position of the cameras 
effectively, accommodated by the online calibration 
method that exploits mutual neighboring closest points, 
and a sparse ICP algorithm. The constructed mesh had no 
redundancies after application of the proposed algorithm, 
which iteratively removes the estimated redundant regions 
from the boundary of the mesh. In addition, the proposed 
3D reconstruction system could adjust the mismatched 
brightness between the RGB-D cameras by using the 
collateral overlapping region of the redundancy removal 
algorithm. The overall speed for implementation was 21fps 

with a latency of 86.3ms, which is sufficient for real-time 
processing. 
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