• 제목/요약/키워드: moving force

검색결과 802건 처리시간 0.036초

보조치를 이용한 가동 코일형 PMLSM의 단부효과에 의한 Detent Force 저감에 관한 연구 (A Study on the Reduction of Detent Force caused by End-Effect for Moving Coil Type PMLSM Using Auxiliary-teeth)

  • 정수권;주건배;이동엽;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권9호
    • /
    • pp.459-464
    • /
    • 2006
  • The detent force by end-effect has an undesired influence on moving coil type Permanent Magnet Linear Synchronous Motor(PMLSM). So, the reduction of detent force by end-effect is especially required for the improvement of thrust characteristics. In this paper, in order to reduce detent force by end-effect, the auxiliary-teeth is installed at the end part of mover. It is also analyzed by Finite Element Analysis(FEA) and optimized by using neural network. By comparison, the detent force is reduced about 41.4[%] comparing to that of basic model.

열차하중을 받는 트러스교의 동적하중모형 연구 (A Study on the Dynamic Load Model of Truss Bridge subjected to Moving Train Loads)

  • 안주옥;박상준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 1996
  • Dynamic load models which show the practical behavior of truss bridge subjected to moving train load are presented. Three basically approaches are available for evaluating structural response to dynamic effects : moving force, moving mass, and influence moving force and mass. Simple warren truss bridge model is selected in this research, and idealized lumped mass system, modelled as a planar structure. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of truss bridge and moving train load. The solution of the uncoupled equations of motion is solved by Newmark-$\beta$ method. The results show that dynamic response of moving mass and static analysis considering the impact factor specified in the present railway bridge code was nearly the same. Generally, the dynamic response of moving force is somewhat greater than that of moving mass. The dynamic load models which are presented by this study are obtained relatively adequate load model when apply to a truss bridge.

  • PDF

Dynamic response of a beam on multiple supports with a moving mass

  • Lee, H.P.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.303-312
    • /
    • 1996
  • The dynamic behavior of an Euler beam with multiple point constraints traversed by a moving concentrated mass, a "moving-force moving-mass" problem, is analyzed and compared with the corresponding simplified "moving-force" problem. The equation of motion in matrix form is formulated using Lagrangian approach and the assumed mode method. The effects of the presence of intermediate point constraints in reducing the fluctuation of the contact force between the mass and the beam and the possible separation of the mass from the beam are investigated. The equation of motion and the numerical results are expressed in dimensionless form. The numerical results presented are therefore applicable for a large combination of system parameters.

대변위-고정밀 위치제어를 위한 자기변형 self-moving cell 선형모터 (Magentostrictive self-moving cell linear motor for displacement control with large force and high resolution)

  • 두재균;김재환;최승복;박홍근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.249-255
    • /
    • 2000
  • The design and test of an magnetostrictive linear motor(MLM) that operates based on self-moving cell concept is presented. The moving cell is composed of Terfenol-D linear actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses the stroke of Terfenol-D actuators and friction force of the cells, it can essentially produce long stroke and large force. The overall performance of the MLM was measured in terms of speed and force. The pushing force is directly related with the friction force. This work is a proof-of-concept stage and investigation is necessary for realistic application.

  • PDF

부스바 접점 가동시 접촉면에서 압점력 해석 (Analysis for Force Distribution on Surface Between Busbar Contacts)

  • 오연호;송기동;김귀식;김진기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.82-84
    • /
    • 2003
  • In case contact between point of contacts is not achieved well, contact resistance is grown, and by current concentration at current conducting contacts can weld. In order to decrease contact resistance between contacts in case of busbar, installing spring between fixed contact and moving contact. and then force on faying surface of contacts increase and contact resistance decrease. But, in case increase force of spring to widen contact area, operating force moving contact can grow, on the contrary force of spring is small, contact resistance becomes low. Therefore, need to optimize force and number of spring. position, and also need to examine force change on contact surface at point of contact moving. In this paper, dynamic kinetics analysis for force on faying surface of contacts is performed at unsteady state. It is showed to not uniform force on surface between contacts, and we can got more uniform force by means of change spring position.

  • PDF

ENERGY ON A PARTICLE IN DYNAMICAL AND ELECTRODYNAMICAL FORCE FIELDS IN LIE GROUPS

  • Korpinar, Talat;Demirkol, Ridvan Cem
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.265-280
    • /
    • 2018
  • In this study, we firstly define equations of motion based on the traditional model Newtonian mechanics in terms of the Frenet frame adapted to the trajectory of the moving particle in Lie groups. Then, we compute energy on the moving particle in resultant force field by using geometrical description of the curvature and torsion of the trajectory belonging to the particle. We also investigate the relation between energy on the moving particle in different force fields and energy on the particle in Frenet vector fields.

이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성 (Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load)

  • 홍동균;김광식
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

이동질량 및 축 하중의 영향을 받는 보의 동적 거동 (Dynamic Analysis of the Beam Subjected to the Axial Load and Moving Mass)

  • 이규호;정진태
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.271-279
    • /
    • 2011
  • In this study, the dynamic analysis of a beam is analyzed by using the finite element method when the beam has moving mass and axial load. To consider the contact force between the moving mass and beam, coupled nonlinear equations of contact dynamics are derived, and then the weak form for the finite element method is established. The finite element computer programs based on the Lagrange multiplier method are developed to compute the contact force. Furthermore, a variety of simulations are performed for various design parameters such as moving mass velocity, compressive axial load and tension load. Finally, relations between the dynamic response and contact force are also discussed.

A MOM-based algorithm for moving force identification: Part II - Experiment and comparative studies

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.155-169
    • /
    • 2008
  • A MOM-based algorithm (MOMA) has been developed for moving force identification from dynamic responses of bridge in the companion paper. This paper further evaluates and investigates the properties of the developed MOMA by experiment in laboratory. A simply supported bridge model and a few vehicle models were designed and constructed in laboratory. A series of experiments have then been conducted for moving force identification. The bending moment and acceleration responses at several measurement stations of the bridge model are simultaneously measured when the model vehicle moves across the bridge deck at different speeds. In order to compare with the existing time domain method (TDM), the best method for moving force identification to date, a carefully comparative study scheme was planned and conducted, which includes considering the effect of a few main parameters, such as basis function terms, mode number involved in the identification calculation, measurement stations, executive CPU time, Nyquist fraction of digital filter, and two different solutions to the ill-posed system equation of moving force identification. It was observed that the MOMA has many good properties same as the TDM, but its CPU execution time is just less than one tenth of the TDM, which indicates an achievement in which the MOMA can be used directly for real-time analysis of moving force identification in field.

이동하중을 받는 보와 가동 기초 위에 설치된 계에의 동흡진기의 이용 (Usage of Dynamic Vibration Absorbers for a Beam Subjected to Moving Forces and for a System Mounted on a Moving Base)

  • 이건명;변재현
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.27-34
    • /
    • 2015
  • Dynamic vibration absorbers are widely used in machinery, buildings, and structures, including bridges. Two cases of their usage are considered in this paper. One is a simply supported beam subjected to either a moving force or a sequence of moving forces, which simulates a train-bridge interaction problem. The other is a case where a primary system is mounted on a base that is not grounded and is excited by an external force. The conditions that the dynamic vibration absorbers must meet in these cases are found and compared to those for usual cases where bases of primary systems are grounded.