• Title/Summary/Keyword: mouse oocytes

Search Result 280, Processing Time 0.03 seconds

Superovulation-Oocyte and Uterine Function (과배란-난자 및 자궁기능)

  • 문영석
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Superovulation with exogenous gonadotropins creates a spectrum of pre or periovulatory hormonal changes with subsequent detrimental effects on oocyte quality, fertilization, embryo development, implantation and maintenance of pregnancy. Our recent study determined potential roles for insulin-like growth factor-1 (IGF-1) in uterine environment regulation and preimplant tation in the rat. The evidence indicates that IGF-l may play an important role in the main tenance of a receptive uterine environment for embryonic development and the regulation of decidualization. Embryonic loss and failure of implantations following superovulation may be partially attributed to disturbances in uterine IGF-l action as observed in this study. We investigated the effects of superovulatory doses of gonadotropins on frequency of chromosomal a abnormalities of mouse embryos. Chromosome a analysis of mouse zygotes and 8- to 16-cell stage embryos from spontaneously ovulated, 5, 10, and l 15 lU pregnant mare serum gonadotropin (PMSG) superovulated mice was carried out. Aneuploidy, polyploidy and structural chrom- osomal abnormalities were detected among the four groups. However, only polyploidy was correlated with superovulation. In 10 and 15 IV PMSG treated groups, the rate of polypoidy was 2.9% and 10.5%, respectively. Furthermore, there was a dose reponse relationship between the PMSG dose and the incidence of embryonic p polyploidy (P

  • PDF

The Expression of Solute carrier family members Genes in Mouse Ovarian Developments (생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상)

  • O, Lee-Gyun;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • Granulosa cells, which surround the oocyte within the ovarian follicle, play an essential role in creating conditions required for the development of oocytes and follicles. The solute carrier family (SLC) is comprised of influx transporters of steroidal hormones, various drugs, and several other substrates. The differential expression of selected DEGs was confirmed using in situ hybridization analysis. SLC23A3 and SLC39A10 were highly expressed in the ovary. The SLC39A10 gene was expressed in the primordial follicle stage, but SLC23A3 was expressed in the growing follicle stage. Contrastingly, the expression of SLC23A3 was increased in granulosa cells at the growing follicle stage. The differential expressions of SLC23A3 and SLC39A10 between the primordial and primary follicles were additionally confirmed by using follicle isolations. The gene expression profile from the present study may provide insight for future studies on the mechanism(s) involved in primordial-primary follicular transition and suggestions to promote follicular development in ovarian dysfunction.

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary (생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인)

  • Kim, Jin-Hee;Youn, Mi-Ra;Bang, So-Young;Sim, Ji-Yeon;Kang, Hee-Rae;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

The Effects of Human Follicular Fluid on Embryonal Development of Mouse in In Vitro Culture (체외배양에서 인간 난포액이 생쥐의 배 발달에 미치는 영향)

  • Min, Bu-Kie;Choi, Ki-Wook;Kim, Kie-Suk;Lee, Hee-Sub;Hong, Ki-Yeon;Lee, Bong-Ju;Lee, Sun-Young;Park, Seung-Teak
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 1999
  • The follicular fluid (FF) of ovary contains various biological active products which affected on the growth of follicles and the fertilization of oocyte in physiological reproductive process of mammals. This study was designed to determine the effects of human FF on fertilization of oocyte and embryonal development in vitro culture. The FF was prepared as clear without blood contamination by needle aspiration from mature follicles of human at the time of oocytes retrieval for in vitro fertilization (IVF). As the medium for culture in vitro of embryonal cells, human tubal fluid (HTF) supplemented with follicular fluids at concentrations of 10%, 40% and pure FF were used. These effects were compared to control group of cultured embryos in HTF supplemented with 0.4% BSA (bovine serum albumin). For IVF, 64 eggs in control group, 67 eggs in 10% FF, 57 eggs in 40% FF and 64 eggs in pure FF were respectively allocated. And the rates of fertilization were almost similar in all groups as resulting 82.81% in control, 85.07% in 10% FF, 87.71% in 40% FF and 81.25% in pure FF. On the examination for embryonal cleavage from fertilized eggs, the rates of developing to 4 cell stage was similar in all groups, as results 98.11% in control, 98.27% in 10% FF and 98% in 40% FF but 78.84% in pure FF. And the rates of developing to 8-16 cell stage were significantly reduced as 44% in 40% FF and 44.23% in pure FF (p<0.05) compare to 71.69% in control media. As likewise, the rates of developing to morular stage were also significantly reduced to 36% (p<0.05) and 21.15% (p<0.01) respectively in 40% FF and pure FF. And the rates to blastocystic stage of embryo was lowest as 7.69% in pure FF (Table 1). The quality of embryonal cells on cleavage to the 8-16 cell stage was poorer, higher concentrations of FF. The rates of grade 1 in pure FF, as 23.07%, was lowest compare to those of other groups, in which the rates of grade 1 in control, 10% FF and 40% FF were 58.49%, 47.36% and 34% respectively. And on the contrary, the rate of grade 4 in pure FF was highest as 23.07%, while those were 5.66% in control, 8.77% in 10% FF and 20% in 40% FF (Table 2). On the viability of embryos, the rate of embryonal cell death was more rise, at the higher concentrations as well as longer exposure in the follicular fluid. At 48 hours after in vitro culture of embryos, the rate of survival embryos in pure FF was markedly lowered as 44.23%, compare to that of control (p<0.05). But there was not significant difference between the rates of survival embryos in each group beside the pure FF, which the rates were 77.35% in control, 70.17% in 10% FF and 60% in 40% FF respectively. And at 72 hours after in vitro culture, the rates of survival embryos were also significantly dropped to 21.15% in pure and 36% in 40% at concentration of FF compare to 62.26% in control (p<0.05, p<0.01). Finally, the rate of embryonal death at 96 hours after in vitro culture was highest as 82.69% in pure FF among all groups which those were 35.84 in control, 56.14% in 10% FF and 64% in 40% FF respectively (Fig. 1, 2, 3). In conclusion, this study suggests that the FF has no effects, in particular, to the in vitro fertilization of oocytes but exerted a bad effect to the cleavage, quality and viability of the embryonal cells during in vitro culture. However, the FF is harmful on embryonal development at conditions in higher concentration and especially on the embryos after $8{\sim}16$ cell stage.

  • PDF

The Effect of Low Concentrated Hypoxanthine and FSH in 10% FBS Supplemented Medium on Immature Oocyte in vitro Maturatio (낮은 농도의 Hypoxanthine과 FSH가 미성숙난자의 체외성숙에 미치는 영향)

  • Han, Hyuck-Dong;Lim, Chang-Kyo;Youm, Hyun-Sik;Hyon, Naomi Na-Hyoung;Lee, Ji-Hyang;Hong, Me
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.175-186
    • /
    • 2009
  • Objective: We examined the effect of different culture media on oocyte maturation. Methods: Four groups of media, (1) 0.3% BSA mBASAL-XI-HTF, (2) 0.3% BSA mBASAL-XI-HTF with FSH, (3) 10% FBS mBASAL-XI-HTF and (4) 10% FBS mBASAL-XI-HTF with FSH were prepared. Mouse cumulus enclosed oocytes (CEOs) were incubated in each group of medium. Hypoxanthine (Hx) was mixed to each group of medium in increasing concentrations of 1 mM, 2 mM and 4 mM. CEOs were incubated and assessed for GVBD and MII development at 3, 6, 18 hours. Results: CEOs maturation to GVBD was seen in all four groups during 3 hours of culture, however MII stage of oocytes was seen after 6 hours. Complete arrest of GV stage in 4 mM Hx media without FSH and partial arrest in 2 mM Hx media without FSH were seen during 18 hours of culture but development was not suppressed in 1 mM Hx media without FSH. More prominent GVBD suppression was noted at early 3, 6 hours culture in 1 mM, 2 mM Hx media with FSH compared to media without FSH. But the suppression was recovered at 18 hours. This result suggests that low concentrated Hx and FSH supplemented media can suppress CEOs maturation during early culture period but recovery is resumed or even stimulated at late period. 1 mM, 2 mM Hx 10% FBS medium with FSH had significantly higher rates of MII development (71.7%, 66.7%) at 18 hours compared to other media. Conclusion: Our results show that low concentrated Hx and FSH supplemented 10% FBS media may stimulate MII development after an initial inhibitory effect.

Effect of a short-term in vitro exposure time on the production of in vitro produced piglets

  • Hwang, In-Sul;Kwon, Dae-Jin;Kwak, Tae-Uk;Lee, Joo-Young;Hyung, Nam-Woong;Yang, Hyeon;Oh, Keon Bong;Ock, Sun-A;Park, Eung-Woo;Im, Gi-Sun;Hwang, Seongsoo
    • Journal of Embryo Transfer
    • /
    • v.31 no.2
    • /
    • pp.117-121
    • /
    • 2016
  • Although piglets have been delivered by embryo transfer (ET) with in vitro produced (IVP) embryos and blastocysts, a success rate has still remained lower level. Unlike mouse, human, and bovine, it is difficult to a production of piglets by in vitro fertilization (IVF) because of an inappropriate in vitro culture (IVC) system in pig. Therefore, the present study was conducted to investigate whether minimized exposure time in IVC can improve the pregnancy and delivery rates of piglets. Immediately after IVM, the oocytes were denuded and co-incubated with freshly ejaculated boar semen for 3.5 to 4 hours at $38.5^{\circ}C$ under 5% $CO_2$ in air. To avoid long-term exposure to in vitro state, we emitted IVC step after IVF. After that the presumptive zygotes were transferred into both oviducts of the surrogate on the same day or 1 day after the onset of estrus. Pregnancy was diagnosed on day 28 after ET and then was checked regularly every month by ultrasound examination. The 3 out of 4 surrogates were determined as pregnant (75%) and a total of 5 piglets (2 females and 3 males) were delivered at $118.3{\pm}2.5$ days of pregnancy period. In conclusion, a short-term exposure time may be an important factor in the production of IVP-derived piglets. It can be apply to the in vitro production system of transgenic pig by IVF, cloning, and pronuclear microinjection methods.

Effects of Protein Sources and Co-culture on In Vitro Culture of IVF-derived Porcine Embryos (단백질 공급원 및 체세포와의 공배양이 돼지 체외수정란의 체외발달에 미치는 영향)

  • 한선경;구덕본;이규승;황윤식;김정익;이경광;한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2000
  • This study was conducted to investigate whether various protein sources and co-culture affect in vitro development of porcine zygotes derived from In vitro maturation/fertilization (IVM/IVF). These results obtained in these experiments are summarized as follows 1. When porcine oocytes matured and fertilized In vitro were cultured in NCSU 23 medium supplemented with various BSA concentrations (0.4, 0.8 and 3.2%), In vitro developmental rates of porcine zygotes to blastocyst stage were 22.9, 18.4 and 14.6%, respectively. High concentration of BSA (3.2%) showed a smaller nuclei number (36.1$\pm$11.8) of blastocysts than 0.4 and 0.8% BSA groups (53.2$\pm$27.4 and 61.2$\pm$22.5, respectively) (P<0.05). This result indicates that high concentration of BSA is detrimental on preimplantation development of IVF-derived porcine embryos. 2. No differences were detected in the developmental rate and mean nuclei number of porcine embryos between 10 and 20% FBS concentrations in culture medium. 3. IVF-derived porcine embryos co-cultured with mouse or porcine embryonic fibroblast cells showed a lower development to the blastocyst stage than those without co-culture system. Consequently, the present study suggests that high concentration of BSA as a protein source in culture medium suppresses development potential of porcine embryos produced In vitro. In addition, co-culture with somatic cells is not effective on in vitro development of IVF-derived porcine embryos to blastocyst stage.

  • PDF

Novel Glycolipoproteins from Ginseng

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Hwang, Sung-Hee;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Sang-Mok;Lim, Yoong-Ho;Kim, Dong-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.92-103
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate human body. In the present study, we isolated novel glycolipoproteins from ginseng that activate $Ca^{2+}$-activated $Cl^-$ channel (CaCC) in Xenopus oocytes and transiently increase intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in mouse Ehrlich ascites tumor cells. We named the active ingredients as gintonin. Gintonin exists in at least six different forms. The native molecular weight of gintonin is about 67 kDa but its apparent molecular weight is about 13 kDa, indicating that gintonin might be a pentamer. Gintonin is rich in hydrophobic amino acids. Its main carbohydrates are glucose and glucosamine. Its lipid components are linoleic, palmitic, oleic, and stearic acids. Gintonin actions were blocked by U73122, a phospholipase C inhibitor, 2-aminoethxydiphenyl borate, an inositol 1,4,5-trisphosphate receptor antagonist, or bis (o-aminophenoxy) ethane-N,N,N0,N0-tetracetic acid acetoxymethyl ester, a membrane permeable $Ca^{2+}$ chelator. In the present study, we for the first time isolated novel gintonin and showed the signaling pathways on gintonin-mediated CaCC activations and transient increase of $[Ca^{2+}]_i$. Since $[Ca^{2+}]_i$ as a second messenger plays a pivotal role in the regulation of diverse $Ca^{2+}$-dependent intracellular signal pathways, gintonin-mediated regulations of $[Ca^{2+}]_i$ might contribute to biological actions of ginseng.

mRNA Expression of the Regulatory Factors for the Early Folliculogenesis in vitro (체외배양 중인 생쥐 난소에서 초기난포 조절인자의 발현)

  • Yoon, Se-Jin;Kim, Ki-Ryeong;Chung, Hyung-Min;Yoon, Tae-Ki;Cha, Kwang-Yul;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.207-216
    • /
    • 2005
  • Objective: To understand the crucial requirement for the normal early folliculogenesis, we evaluated molecular as well as physiological differences during in vitro ovarian culture. Among the important regulators for follicle development, anti-Müllerian hormone (AMH) and FSH Receptor (FSHR) have been known to be expressed in the cuboidal granulosa cells. Meanwhile, it is known that c-kit is germ cell-specific and GDF-9 is also oocyte-specific regulator. To evaluate the functional requirement for the competence of normal follicular development, we investigated the differential mRNA expression of several factors secreted from granulosa cells and oocytes between in vivo and in vitro developed ovaries. Materials and Methods: Ovaries from ICR neonates (the day of birth) were cultured for 4 days (for primordial to primary transition) or 8 days (for secondary follicle formation) in ${\alpha}$-MEM glutamax supplemented with 3 mg/ml BSA without serum or growth factors. The mRNA levels of the several factors were investigated by quantitative real-time PCR analysis. Freshly isolated 0-, 4-, and 8-day-old ovaries were used as control. Results: The mRNA of AMH and FSHR as granulosa cell factors was highly increased according to the ovarian development in both of 4- and 8-day-old control. However, the mRNA expression was not induced in both of 4- and 8-day in vitro cultured ovaries. The mRNA expression of GDF-9 known to regulate follicle growth as an oocyte factor was different between in vivo and in vitro developed ovaries. In addition, the transcript of GDF-9 was expressed in the primordial follicles of mouse ovaries. The mRNA expression of c-kit was not significantly different during the early folliculogenesis in vitro. Conclusion: This is the first report regarding endogenous AMH and FSHR expression during the early folliculogenesis in vitro. In conclusion, it will be very valuable to evaluate cuboidal granulosa cell factors as functional marker(s) for normal early folliculogenesis in vitro.