DOI QR코드

DOI QR Code

The Expression of Solute carrier family members Genes in Mouse Ovarian Developments

생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상

  • O, Lee-Gyun (Department of Laboratory Medicine, St. Vincent Hospital, The Catholic University of Korea) ;
  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
  • 오이균 (가톨릭대학교 성빈센트병원 진단검사의학과) ;
  • 박창은 (남서울대학교 임상병리학과 분자진단연구소)
  • Received : 2017.02.06
  • Accepted : 2017.02.12
  • Published : 2017.03.31

Abstract

Granulosa cells, which surround the oocyte within the ovarian follicle, play an essential role in creating conditions required for the development of oocytes and follicles. The solute carrier family (SLC) is comprised of influx transporters of steroidal hormones, various drugs, and several other substrates. The differential expression of selected DEGs was confirmed using in situ hybridization analysis. SLC23A3 and SLC39A10 were highly expressed in the ovary. The SLC39A10 gene was expressed in the primordial follicle stage, but SLC23A3 was expressed in the growing follicle stage. Contrastingly, the expression of SLC23A3 was increased in granulosa cells at the growing follicle stage. The differential expressions of SLC23A3 and SLC39A10 between the primordial and primary follicles were additionally confirmed by using follicle isolations. The gene expression profile from the present study may provide insight for future studies on the mechanism(s) involved in primordial-primary follicular transition and suggestions to promote follicular development in ovarian dysfunction.

난포 내 난자를 둘러싸고 있는 과립세포는 난자를 위한 성장상태 및 난포의 발달에 중요하다. Solute carrier family 유전자는 스테로이드 호르몬, 다양한 약물, 몇몇 다른 기질을 유입시킨다. 연구에서 획득한 서로 다르게 발현하는 유전자들 (DEGs) 중 일부를 in situ hybridization을 통해 분석하였다. 분석한 결과 SLC23A3과 SLC39A10이 난소에서 높게 발현하였다. SLC39A10 유전자는 원시난포에서 높게 발현하였고, SLC23A3은 일차, 이차 난포에서 높게 발현하였다. 특히 성장하는 난포의 과립막 세포에서 발현하였다. SLC23A3과 SLC39A10은 원시난포와 일차난포에서 다르게 발현하는 것은 각 난포의 분리를 통해 좀 더 확인해야 할 것이다. 본 연구에서는 유전자 발현 정보를 통해 원시난포의 개시와 성장을 위한 전환에 관여하는 기전을 이해하는데 기초정보와 난포발달 촉진을 위한 난소기능부전의 기전을 규명하는데 정보를 제공할 것으로 기대된다.

Keywords

References

  1. De Loos FAM, Zeinstra E, Bevers MM. Follicular wall maintains meiotic arrest in bovine oocytes cultured in vitro. Mol Reprod Dev. 1994;39(2):162-165. https://doi.org/10.1002/mrd.1080390207
  2. Blondin P, Sirard MA. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev. 1995;41(1):54-62. https://doi.org/10.1002/mrd.1080410109
  3. Wood MA, Rajkovic A. Genomic markers of ovarian reserve. Semin Reprod Med. 2013;31(6):399-415. https://doi.org/10.1055/s-0033-1356476
  4. Trombly DJ, Woodruff TK, Mayo KE. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med. 2009;27(1):14-23. https://doi.org/10.1055/s-0028-1108006
  5. Dole G, Nilsson EE, Skinner MK. Glial-derived neurotropic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction. 2008;135(5):671-682. https://doi.org/10.1530/REP-07-0405
  6. Racki WJ, Richter JD. CPEB controls oocyte growth and follicle development in the mouse. Development. 2006;133(22):4527-4537. https://doi.org/10.1242/dev.02651
  7. Christenson LK. MicroRNA control of ovarian function. Anim Reprod. 2010;7(3):129-133.
  8. Ambekar AS, Nirujogi RS, Srikanth SM, Chavan S, Kelkar DS, Hinduja I, et al. Proteomic analysis of human follicular fluid: A new perspective towards understanding folliculogenesis. J Proteomics. 2013;87(7):68-77. https://doi.org/10.1016/j.jprot.2013.05.017
  9. Pangas SA, Rajkovic A, Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update. 2006;12(1):65-76. https://doi.org/10.1093/humupd/dmi033
  10. Hwang IT, Kim YJ, Kim SH, Kwak Cl, Gu YY, Chun JY. Annealing control primer system for improving specificity of PCR amplification. Biotechniques. 2003;35:1180-1184. https://doi.org/10.2144/03356st03
  11. Park CE, Ko JJ, Lee SH, Cha KY, Kim K, Lee KA. Analysis of the gene expression by laser capture microdissection (II): Differential gene expression between primordial and primary follicles. Dev Reprod. 2002;6(2):89-96.
  12. Jung BH, Sung HH, Park CE. Expression of membrane fusion related genes in mouse ovary. Korean J Clin Lab Sci. 2016;48(1):8-14. https://doi.org/10.15324/kjcls.2016.48.1.8
  13. Park CE, Hong SN. Expression patterns of cell cycle related genes mRNA and proteins in the mouse ovary. Korean J Clin Lab Sci. 2006;38(1):72-81.
  14. Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med. 2002;8(5):514-517. https://doi.org/10.1038/0502-514
  15. Malcuit C, Trask MC, Santiago L, Beaudoin E, Tremblay KD, Mager J. Identification of novel oocyte and granulosa cell markers. Gene Expr Patterns. 2009;9(6):404-410. https://doi.org/10.1016/j.gep.2009.06.004
  16. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology. 2008;149(10):4912-4920. https://doi.org/10.1210/en.2008-0351
  17. Roudebush WE, Kivens WJ, Mattke JM. Biomarkers of Ovarian Reserve. Biomark Insights. 2008;3(4):259-268.
  18. Kim AM, Vogt S, O'Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol, 2010;6(9):674-681. https://doi.org/10.1038/nchembio.419
  19. Lisle RS, Anthony K, Randall MA, Diaz FJ. Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction. 2013;145(4):381-390. https://doi.org/10.1530/REP-12-0338
  20. Jiang ZZ, Hu MW, Wang ZB, Huang L, Lin F, Qi ST, et al. Survivin is essential for fertile egg production and female fertility in mice. Cell Death Dis. 2014;5(3):e1154. doi: 10.1038/cddis.2014.126.
  21. Li Q, Murphy M, Ross J, Sheehan C, Carlson JA. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol. 2004;31(10):633-642. https://doi.org/10.1111/j.0303-6987.2004.00243.x
  22. Jillian AP, Terry LO. Developmental role and regulation of cortex, a meiosis-specific anaphase-promoting complex/cyclosome activator. PLoS Genet. 2007;3(11):e202. https://doi.org/10.1371/journal.pgen.0030202
  23. Enyuan S, Xiangyuan W, Duancheng W, David AG, Debra JW. The double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn. 2009;238(4):908-917. https://doi.org/10.1002/dvdy.21911
  24. Ane K, Tone AF, Solveig S, Jarle B, Zeremariam Y, Matthias K, et al. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation. J Biol Chem. 2012;287(19):15851-15861. https://doi.org/10.1074/jbc.M111.281832
  25. Masaoka A, Gassman NR, Kedar PS, Prasad R, Hou EW, Horton JK, et al. HMGN1 protein regulates poly (ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts. J Biol Chem. 2012;287(33):27648-27658. https://doi.org/10.1074/jbc.M112.370759
  26. Park CE, Kim DJ, Hong SN. Expression of mRNAs and proteins of cyclin A and LATS genes in ovary. Korean J Clin Lab Sci. 2008;40(1):31-40.