• Title/Summary/Keyword: mouse macrophage cells

Search Result 401, Processing Time 0.047 seconds

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Anti-inflammatory Activity of Extracts of Hovenia dulcis on Lipopolysaccharides-stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 대식세포에 대한 헛개나무(Hovenia dulcis) 추출물의 항염증 효과)

  • Woo, Hyun Sim;Lee, Sun Min;Heo, Jeong Doo;Lee, Min-Sung;Kim, Yeong-Su;Kim, Dae Wook
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.466-477
    • /
    • 2018
  • In this study, the anti-inflammatory activities of the extracts of different parts of Hovenia dulcis such as leaves, stems, and roots were investigated. Among them, the roots extract (RE) showed the most potent suppressive effect against pro-inflammatory mediators in LPS-stimulated mouse macrophage cells. RE induced dose-dependent reduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and concomitantly reduced the production of NO and $PGE_2$. Additionally, pre-treatment with RE significantly suppressed the production of inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6, as well as mRNA levels. Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-kB) were also strongly attenuated by RE in RAW264.7 cell. Furthermore, RE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increase HO-1 activity in RAW264.7 macrophages. Therefore, these results indicate that RE strongly inhibits LPS-induced inflammatory responses by blocking NF-kB activation, inhibiting MAPKs phosphorylation, and enhancing HO-1 expression in macrophages, suggesting that RE of H. dulicis and a major component, 27-O-protocatechuoylbetulinic acid could be applied as a valuable natural anti-inflammatory material.

Anti-inflammatory Activity of Crinum asiaticum Linne var. Japonicum Extract and its Application as a Cosmeceutical Ingredient (문주란의 항염효과와 화장료적 특성)

  • Kim, Ki-Ho;Kim, Young-Heui;Kim, Ki-Soo;Park, Sun-Hee;Lee, Soo-Hee;Kim, Young-Jin;Kim, Young-Sil;Kim, Jong-Heon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.59-64
    • /
    • 2006
  • Crinum asiaticum Linne var. japonicum has long been used as a rheumatic remedy, an anti-pyretic, an anti-ulcer treatment, and for the alleviation of local pain and fever in Korea and Malaysia. In order to investigate the possibility of Crinum asiaticum Linne var. japonicum extract as a cosmetic ingredient, we measured its anti-inflammatory effect by inhibition of iNOS (inducible nitric oxide synthase), and the release of PGE2, IL-6, and IL-8. HPLC experiment after extraction with 95% ethanol at pH 3.5 showed that Crinum asiaticum Linne var. japonicum was mainly composed of lycorine (up to 1%), a well-known immunosuppressant. The content of lycorine varied depending on the type of tissue analyzed and the extraction method. In anti-inflammatory assay for inhibition of nitric oxide formation on lipopolysaccharide (LPS)- activated mouse macrophage RAW 264.7 cells, the ethanolic extract of Crinum asiaticum showed inhibitory activity of NO production in dose-dependent manner ($IC_{50} = 83.5 {\mu}g/mL$). Additional study by RT-PCR demonstrated that the extract of Crinum asiaticum significantly suppressed the expression of the iNOS gene. Moreover, the extract of Crinum asiaticum did not show my cytotoxicity, but did show cell proliferation effect against LPS ($10{\sim}60%$ increase of tell viability). In an assay to determine inhibition of the $H_2O_2$-activated release of PGE2, IL-6, and IL-8 in human normal fibroblast cell lines, the release of PGE2 and IL-6 was almost completely inhibited above concentrations of 0.05% and 1%, respectively. Moreover, the release of IL-8 was completely inhibited over the entire range of concentrations (> 0.0025%). The result showed that the extract of Crinum asiaticum Linne var. japonicum has sufficient anti-inflammatory effect. There-fore, Crinum asiaticum Linne var. japonicum extract may be useful as an ingredient of cosmetic products.

Anti-inflammatory Activities of Ethanol Extracts of Dried Lettuce (Lactuca sativa L.) (건조 상추 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.325-331
    • /
    • 2019
  • Lettuce (Lactuca sativa L.) is one of the most popular green leafy vegetables, and it contains various beneficial components including polyphenolic compounds and has been known to possess various biological functions such as anti-microbial, anti-oxidative, and anti-inflammatory activities. In the present study, we prepared ethanol extract of dried lettuce (DLE) and investigated its anti-inflammatory activity. To evaluate the anti-inflammatory activity of DLE, nitric oxide (NO) production was measured in LPS-activated mouse macrophage RAW 264.7 cells. DLE significantly suppressed NO production in these cells without affecting cell viabilities while resveratrol was used as a positive control. DLE dramatically decreased the expression of pro-inflammatory genes such as iNOS and COX-2 at the mRNA and protein levels and reduced the expression of several cytokines including $IL-1{\alpha}$, $IL-1{\beta}$, IL-1F6, $TNF-{\alpha}$, CSF2 and CXCL10. In addition, DLE suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating DLE shows its anti-inflammatory activity via regulating MAPKs pathway and $NF-{\kappa}B$ pathways. And also, DLE reduced the production of reactive oxygen species in a dose-dependent manner. DLE increased HO-1 protein expression, and also increased the nuclear translocation of Nrf2. Overall, our results suggest that lettuce down-regulate various pro-inflammatory genes and have its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

The Production and Correlation of Silica Induced Proinflammatory Cytokines and TGF-$\beta$ from Monocytes of Balb/C Mice (Balb/C mouse의 폐장대식세포에서 유리규산 자극에 의한 Proinflammatory Cytokine과 TGF-$\beta$의 생성 및 상관관계)

  • Ki, Shin-Young;Kim, Eun-Young;Kim, Mi-Ho;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.823-834
    • /
    • 1998
  • Background: Chronic inhalation of silica induces the lung fiborsis. The alveolar macrophages ingest the inhaled silica; they liberate the pro-inflammatory cytokines such as IL-1$\beta$, IL-6, TNF-$\alpha$ and fibrogenic cytokines, TGF-$\beta$ and PDGF. Cytokines liberated from macrophage have pivotal role in pulmonary fibrosis. There is a complex cytokine network toward fibrosis. However, the exact roles and the interaction among the proinflammatory cytokines and TGF-$\beta$, a fibrogenic cytokine, have not been defined, yet. In this study, we investigated silica induced IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ production and the effect of IL-1$\beta$, IL-6, TNF-$\alpha$ on the production of TGF-$\beta$ from lung macrophages of Balb/C mice. Method: We extracted the lung of Balb/C mice and purified monocytes by Percoll gradient method. Macrphages were stimulated by silica ($SiO_2$) in the various concentration for 2, 4, 8, 12, and 24 hours. The supernatants were used for the measurement of protein levels by bioassay, and cells for the levels of mRNA by in situ hybridization. Results: The production of IL-6 was not observed till 4 hours, and reached the peak levels at 8 hours after stimulation of silica. The production of TNF-$\alpha$ increased from 2 hours and reached the peak levels at 4 hours after stimulation of silica. The spontaneous TGF-$\beta$ production reached the peak levels at 24 hours. TNF-$\alpha$ upregulated the silica induced TGF-$\beta$ production. Silica induced TGF-$\beta$ production was blocked by pretreated anti-TNF-$\alpha$ antibody. In situ hybridization revealed the increased positive signals at 4 hours in IL-6, at 4 hours TNF-$\alpha$ and 12 hours in TGF-$\beta$. Conclusion: The results above suggest that silica induced the sequential production of IL-6, 1NF-$\alpha$ and TGF-$\beta$ from macrophages and TNF-$\alpha$ upregultaes the production of TGF-$\beta$ from silica-induced macrophages.

  • PDF

Anti-Oxidant, Anti-Melanogenic, and Anti-Inflammatory Activities of Zanthoxylum schinifolium Extract and its Solvent Fractions (산초 추출물 및 분획물의 항산화, 미백 및 항염증 활성)

  • Jin, Kyong-Suk;Oh, You Na;Park, Jung Ae;Lee, Ji Young;Jin, Soojung;Hyun, Sook Kyung;Hwang, Hye Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • This study was designed to explore new nutraceutical and cosmetic resources possessing biological activities from the plant kingdom. To fulfill this purpose, we analyzed the anti-oxidative, anti-melanogenic, and anti-inflammatory activities of Zanthoxylum schinifolium extract (ZSE) and its solvent fractions using in vitro assays and cell culture model systems. Three kinds of ZSE treated with methanol, ethanol, and water exhibited potent anti-oxidative activities through DPPH radical scavenging capacity, and inhibited in vitro DOPA oxidation. Furthermore, Z. schinifolium methanol extract (ZSME) inhibited the ${\alpha}$-melanocyte stimulating hormone, which induces melanin contents in B16F10 cells. Its anti-melanogenic activity originates from the inhibition of tyrosinase enzyme activity and melanogenesis related protein expression. Moreover, lipopolysaccharide induced nitric oxide production in the RAW 264.7 cell line was also ameliorated by ZSME treatment in a dose dependent manner. Among the four solvent fractions of ZSME treated with dichloromethane, ethyl acetate, n-butanol, and water, three fractions, except water, showed significant anti-melanogenic and anti-inflammatory activities. Taken together, these results provide important new insights into Z. schinifolium, indicating that it possesses numerous biological activities such as anti-oxidative, anti-melanogenic, and anti-inflammatory activities. Therefore, it may well serve as a promising material in the field of nutraceuticals and cosmetics.

Anti-oxidative and Anti-inflammatory Effects of Genistein in BALB/c Mice Injected with LPS (LPS 주사한 BALB/c 마우스에서 Genistein의 산화적 스트레스 억제효과 및 항염증 효과)

  • Cho, Hye-Yeon;Noh, Kyung-Hee;Cho, Mi-Kyung;Jang, Ji-Hyun;Lee, Mi-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1126-1135
    • /
    • 2008
  • This study was carried out to investigate the anti-oxidative and anti-inflammatory actions of genistein in BALB/c mice injected with lopopolysaccharide (LPS), called endotoxin. Mice (10 weeks of age) weighing approximately 20 g were divided into 4 groups. Endotoxin shock was induced by intraperitoneal injection of LPS (100 mg/kg BW). LPS and genistein+LPS groups were injected with LPS 30 min after phosphate buffered saline (PBS) solution and genistein (200 mg/kg BW) injections, respectively. Genistein group was injected with genistein, followed by PBS, while PBS group received two injections of PBS. Superoxide anion generation of peritoneal macrophage cells was significantly (p<0.05) lower in the genistein+LPS group than in the LPS injection group at 8 h after intraperitoneal injection, while SOD activity was significantly higher in genistien+LPS group than LPS group. Tumor necrosis factor-$\alpha$ levels of plasma were significant lower (p<0.05) in the genistein+LPS injection group than LPS group at 8 h after intraperitoneal injection. Plasma TBARS was lower in genistein+LPS group than LPS group, while hepatic TBARS were not different among groups. Hepatic glutathione concentrations and antioxidant enzyme activities were ignificantly higher in the genistein+LPS group than in the LPS group at 1 h and 8 h after intraperitoneal injection. Nuclear factor-kappa B (NF-${\kappa}B$) transactivation was significantly (p<0.05) inhibited in LPS group. These results demonstrate genistein may ameliorate inflammatory diseases through inhibition of NF-${\kappa}B$ transactivation and oxidative stress, which may be mediated partially by anti-oxidative effect of genistein.

Role of Alveolar Macrophages in Productions of Prostaglandin D2 and E2 in the Inflamed Lung (프로스타글란딘 D2와 E2의 생성에 대한 허파 마크로파이지의 역할)

  • Joo, Myung-Soo
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.845-852
    • /
    • 2010
  • Our previous study showed that lungs infected by Pseudomonas, a gram-negative bacteria, produce prostaglandin $D_2$ ($PGD_2$) and prostaglandin $E_2$ ($PGE_2$), the two major prostanoids generated by cyclooxygenase-2 (COX-2), and that the ratio of $PGD_2$ and $PGE_2$ can affect the outcome of the bacterial lung infection. In this study, we sought to uncover the mechanism that determines the ratio of $PGD_2$ and $PGE_2$ produced in lung inflammation. When treated with lipopolysaccharide (LPS), primary alveolar macrophages, extracted from mouse lung, more $PGE_2$ was produced than $PGD_2$, whereas MH-S, a murine alveolar macrophage cell line, produced more $PGD_2$ than $PGE_2$ in a similar experiment. Western blot analyses showed that the kinetics of COX-2 expression in both cell types is similar and epigenetic silencing of COX-2 expression did not affect expressions of lipocalin-PGD synthase (L-PGDS) and PGE synthase (mPGES-1), major enzymes synthesizing $PGD_2$ and $PGE_2$ in inflammation, respectively, indicating no effect of COX-2 on expressions of the two enzymes. Expressions of L-PGDS and mPGES-1 were also similar in both cell types, suggesting no effect of the two key enzymes in determining the ratio of $PGD_2$ and $PGE_2$ in these cells. A single intraperitoneal injection of LPS to C57BL/6 mice induced COX-2 expression and, similar to alveolar macrophages, produced more $PGE_2$ than $PGD_2$ in the lung. These results suggest that the differential expressions of $PGD_2$ and $PGE_2$ in the lung reflect those in alveolar macrophages and may not be directly determined by the enzymes responsible for $PGD_2$ and $PGE_2$ synthesis.

Changes in chemical composition and physiological activity of Jeju-Tatary buckwheat tea according to leaching temperature (제주 타타리메밀의 침출 조건에 따른 제주 타타리메밀침출차의 이화학적 특성 및 생리활성)

  • Hyun-A Ko;Hyun Ju Park;Inhae Kang
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.421-427
    • /
    • 2022
  • In this study, Jeju Tatary buckwheat tea's chemical composition and physiological activities were compared according to the leaching temperature (60, 80, 100 ℃). As the leaching temperature is increased, the degree of browning is induced. However, there was no significant change in pH. The total polyphenol content was higher at 80 ℃ than at 60 ℃ leaching temperature, but significantly decreased at 100 ℃ leaching temperature (60 ℃: 17.06 mg GA/g, 80 ℃: 20.09 mg GA/g, 100 ℃ :18.45 mg GA/g). There were high content of flavonoid and rutin as the leaching temperature increased. Consistently, 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging activity and tyrosinase inhibitory activity were significantly higher with increasing temperature (DPPH % inhibition: 60 ℃: 41.88%, 80 ℃: 46.01%, 100 ℃: 46.80%/tyrosinase inhibitory activity: 60 ℃: 9.38%, 80 ℃: 22.94%, 100 ℃: 28.17%). However, there was no significant difference in DPPH radical scavenging activity between 80 and 100 ℃. A cytotoxicity test was performed by treating with Jeju Tatary buckwheat extract into mouse macrophage cells (Raw264.7). 100 and 200 ㎍/mL treatment (100 ℃ extract) were significantly upregulated the survival rate, but there was no significant difference in other concentrations. Collectively, most of the bioactive components, antioxidant activity, and tyrosinase inhibitory activity were induced as the leaching temperature increased. However, the content of polyphenols which are known to have antioxidant activity, was significantly reduced at 100 ℃ leaching temperature. Several reports have demonstrated that leaching at too high temperature lowered the overall acceptability, so the optimal leaching condition of Tatary Buckwheat is 80 ℃, 5 min in this study.