• Title/Summary/Keyword: motion error compensation

Search Result 155, Processing Time 0.043 seconds

A Design of Fuzzy-Cross Coupling Controller for AGV (AGV용 퍼지 상호 결합 제어기 설계)

  • Jeong, Kab-Kyun;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.522-524
    • /
    • 1998
  • In this paper, the cross-coupling controller with fuzzy logic for AGV is developed, Cross-coupling control directly minimizes orientation' error by coordinating the motion of the two drive wheels and uses PI controller for compensation. But, the transient response of PI controller results in deviation from trajectory. The Fuzzy Cross-coupling controller enhances transient performance without steady-state error. The performance of the above controller is demonstrated by simulation and is compared with that of PI controller.

  • PDF

Adaptive Linear Predictive Coding of Time-varying Images Using Multidimensional Recursive Least-squares Ladder Filters

  • Nam Man K.;Kim Woo Y.
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • This paper presents several adaptive linear predictive coding techniques based upon extension of recursive ladder filters. A 2-D recursive ladder filter is extended to a 3-D case which can adaptively track the variation of both spatial and temporal changes of moving images. Using the 2-D/3-D ladder filter and a previous farme predictor, two types of adaptive predictor-control schemes are proposed in which the prediction error at each pel can be obtained at or close to a minimum level. We also investigate several modifications of the basic encoding methods. Performance of the 2-D/3-D ladder filters, their adaptive control schemes, and variations in coding methods are evaluated by computer simulations on a real sequence and compared to the results of motion compensation and frame differential coders. As a validity test of the ladder filters developed, the error signals for the different predictors are compared and evaluated.

  • PDF

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.

A Study on Frame Interpolation and Nonlinear Moving Vector Estimation Using GRNN (GRNN 알고리즘을 이용한 비선형적 움직임 벡터 추정 및 프레임 보간연구)

  • Lee, Seung-Joo;Bang, Min-Suk;Yun, Kee-Bang;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • Under nonlinear characteristics of frames, we propose the frame interpolation using GRNN to enhance the visual picture quality. By full search with block size of 128x128~1x1 to reduce blocky artifact and image overlay, we select the frame having block of minimum error and re-estimate the nonlinear moving vector using GRNN. We compare our scheme with forward(backward) motion compensation, bidirectional motion compensation when the object movement is large or the object image includes zoom-in and zoom-out or camera focus has changed. Experimental results show that the proposed method provides better performance in subjective image quality compared to conventional MCFI methods.

A study on the design exploration of Optical Image Stabilization (OIS) for Smart phone (스마트폰을 위한 광학식 손떨림 보정 설계 탐색에 관한 연구)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1603-1615
    • /
    • 2018
  • In order to achieve the low complexity and area, power in the design of Optical Image Stabilization (OIS) suitable for the smart phone, this paper presents the following design explorations, such as; optimization of gyroscope sampling rate, simple and accurate gyroscope filters, and reduced operating frequency of motion compensation, optimized bit width in ADC and DAC, evaluation of noise effects due to PWM driving. In experiments of gyroscope sampling frequencies, it is found that error values are unvaried in the frequency above 5KHz. The gyroscope filter is efficiently designed by combining the Fuzzy algorithm, to illustrate the reasonable compensation for the angle and phase errors. Further, in the PWM design, the power consumption of 2MHz driving is shown to decrease up to 50% with respect to the linear driving, and the imaging noises are reduced in the driving frequency above 2MHz driving frequency. The operating frequency could be reduced to 5KHz in controller and 10KHz in driver, respectively, in the motion compensation. For ADC and DAC, the optimized exploration experiments verify the minimum bit width of 11bits in ADC as well as 10bits in DAC without the performance degradation.

Steering Control Algorithm of an Up and Down Motion Robot Using a Quaternion with Spherical Cubic Interpolation (쿼터니언의 Spherical Cubic Interpolation 을 이용한 상하이송 로봇의 조향 방법에 관한 연구)

  • Chung W.J.;Kim K.J.;Kim S.H.;Kim H.G.;Seo Y.K.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1832-1835
    • /
    • 2005
  • This paper presents the steering control algorithm of an up and down motion robot using a quaternion. The up and down motion robot is to be moved on an irregular floor that can inevitably result in the errors of both position and orientation. Especially the orientation error should be compensated every work in order to adjust the misaligned values of current orientation to those commanded values. In this paper, we propose a new steering control algorithm between the two values by using a quaternion with spherical cubic interpolation. The proposed algorithm is shown to be effective in terms of vibration when compared to a conventional simple compensation without interpolation, by using $MATLAB^{(R)}$ and $VisualNastran4D^{(R)}$

  • PDF

A Study of Very Low Bit-Rate Color Video Coding Using Adaptive Wavelet Trasform (적응적 웨이블릿 변환을 이용한 저속 비트율 컬러 비디오 코딩에 관한 연구)

  • Kim, Hye-Gyeong;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.701-710
    • /
    • 2000
  • This paper presents a new method for an efficient coding of very low bit-rate color video based on adaptive wavelet transform. Our approach reveals that the coding process works more efficiently if the quantized wavelet coefficients are preprocessed by a mechanism exploiting the redundancies in the wavelet subband structure. Thus, we focuses optimized activity of coding part, and exhaustive overlapped block motion compensation is utilized to ensure coherency in motion compensated error frames, and raised cosine window is applied. The horizontal and vertical components of motion vectors are encoded separately using adaptive arithmetic coding while significant wavelet coefficients are encoded in bit-plane order using adaptive arithmetic coding. On average the proposed codec exceeds H.263 and ZTE in peak signal-to-noise ratio by as much as 2.07 and 1.38dB at 28 kbits, respectively. Fore entire sequence coding, 3DWCVC method is superior to H.263 and ZTE by 0.35 and 0.71dB on average, respectively.

  • PDF

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF

A Study on the Path-Tracking of Optically Guided AGV (Optical 센서를 갖는 AGV의 경로추적에 대한 연구)

  • Ryu, Je-Young;Han, Zhe-Yong;Cho, Duk-Young;Huh, Uk-Youl;Im, Il-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.500-502
    • /
    • 1999
  • This thesis deals with study and implementation of a cross-coupling controller which can enhance the path-tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV in this thesis is differential drive type and has front-side and rear-side optical sensors, which can identify the guiding path. When AGV from the path due to the inevitable error and the deviation must be corrected. It has been shown that compensation only the first term can lead to undesirable oscillatory results and even instability but compensating only the second term leads to a steady state offset error. Cross-coupling control directly minimizes the error by coordinating the motion of the two drive wheels. The cross-coupling controller is analyzed to evaluate its performance. The cross-coupling controller enhances transient performance of the controller is demonstrated by simulation and is compared with that of individual loop controller.

  • PDF

The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error (오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계)

  • Kim, Hyun Woo;Yoon, Yook Hyun;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.