• Title/Summary/Keyword: motion detection

Search Result 1,064, Processing Time 0.031 seconds

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation (손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치)

  • Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).

Light-Weight Mobile VR Platform using HMD with 6 Axis (6 축센서를 갖는 HMD 경량 모바일 VR Platform)

  • Kang, Yunhee;Kang, JungJu
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • Recently VR environment is used in many areas including mobile learning, smart factory. However HMD(head-mounted display) is required to a dedicated and expensive system with high-end specification. When designing a VR system, it is needed to handle performance, mobility and usability. Many VR applications need to handle diverse sensors and user inputs continuously in a streaming manner. In this paper we design a VR mobile platform and implement a low-cost mobile VR HMD running on the platform. The VR HMD supports 3D contents delivery in a mobile manner. It is used to detect the motion detection based on angle value of a VR player from accelerator and gyro sensor. The MPU-6050, 6-axis sensor, is used to get a sensory value and the sensory value is taken as an input to a VR rendering server on a Unity game engine that is generated 3D images.

A Beamforming Method for a Perturbed Linear Towed Array (비선형 형상 견인 어레이를 위한 빔형성 기법)

  • 김승일;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.478-484
    • /
    • 2002
  • Linear towed arrays (LTA) have a nonlinear shape due to tow vessel motion, ocean swells and currents. By reasons of nominally linear shape, various towed array shape estimation techniques have been developed since the perturbed shape cause the error in target detection. In this paper,, we propose the beamforming method for the perturbed LTA with simple structure. The proposed method linearizes a nonlinear phase of steering vector with position information measured by two reference sensors. It can be proved using some properties of Markov transition matrix, and iteration number of linearization process is decided by variance of cross phase difference. As a result of computer simulation in the ocean environment, beampattern of the proposed method is almost same with the ideal case in my type of array shape. In the signal-to-noise ratio (SNR) performance simlation, the DOA estimation performance of the proposed beamforming method is evaluated, and the comparison with Bartlett beamformer of the LTA shows that the proposed method can estimate. the spatial characteristic of sources more accuracy.

Structural Damage Assessment Using Transient Dynamic Response (동적과도응답을 사용한 구조물의 손상진단)

  • 신수봉;오성호;곽임종;고현무
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.395-404
    • /
    • 2000
  • A damage detection and assessment algorithm is developed by measuring accelerations at limited locations of a structure under forced vibrations. The developed algorithm applies a time-domain system identification (SI) method that identifies a structure by solving a linearly constrained nonlinear optimization problem for optimal structural parameters. An equation error of the dynamic equilibrium of motion is minimized to estimate optimal parameters. An adaptive parameter grouping scheme is applied to localize damaged members with sparse measured accelerations. Damage is assessed in a statistical manner by applying a time-windowing technique to the measured time history of acceleration. Displacements and velocities at the measured degrees of freedom (DOF) are computed by integrating the measured accelerations. The displacements at the unmeasured DOF are estimated as additional unknowns to the unknown structural parameters, and the corresponding velocities and accelerations we computed by a numerical differentiation. A numerical simulation study with a truss structure is carried out to examine the efficiency of the algorithm. A data perturbation scheme is applied to determine the thresholds lot damage indices and to compute the damage possibility of each member.

  • PDF

Codebook-Based Foreground-Background Segmentation with Background Model Updating (배경 모델 갱신을 통한 코드북 기반의 전배경 분할)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.375-381
    • /
    • 2016
  • Recently, a foreground-background segmentation using codebook model has been researched actively. The codebook is created one for each pixel in the image. The codewords are vector-quantized representative values of same positional training samples from the input image sequences. The training is necessary for a long time in the most of codebook-based algorithms. In this paper, the initial codebook model is generated simply using median operation with several image frames. The initial codebook is updated to adapt the dynamic changes of backgrounds based on the frequencies of codewords that matched to input pixel during the detection process. We implemented the proposed algorithm in the environment of visual c++ with opencv 3.0, and tested to some of the public video sequences from PETS2009. The test sequences contain the various scenarios including quasi-periodic motion images, loitering objects in the local area for a short time, etc. The experimental results show that the proposed algorithm has good performance compared to the GMM algorithm and standard codebook algorithm.

The Effect of Cognitive Movement Therapy on Emotional Rehabilitation for Children with Affective and Behavioral Disorder Using Emotional Expression and Facial Image Analysis (감정표현 표정의 영상분석에 의한 인지동작치료가 정서·행동장애아 감성재활에 미치는 영향)

  • Byun, In-Kyung;Lee, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.327-345
    • /
    • 2016
  • The purpose of this study was to carry out cognitive movement therapy program for children with affective and behavioral disorder based on neuro science, psychology, motor learning, muscle physiology, biomechanics, human motion analysis, movement control and to quantify characteristic of expression and gestures according to change of facial expression by emotional change. We could observe problematic expression of children with affective disorder, and could estimate the efficiency of application of movement therapy program by the face expression change of children with affective disorder. And it could be expected to accumulate data for early detection and therapy process of development disorder applying converged measurement and analytic method for human development by quantification of emotion and behavior therapy analysis, kinematic analysis. Therefore, the result of this study could be extendedly applied to the disabled, the elderly and the sick as well as children.

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

Impulse Noise Removal of LRF for 3D Map Building Using a Hybrid Median Filter (3D 맵 빌딩을 위한 하이브리드 미디언 필터를 이용한 LRF의 임펄스 잡음 제거)

  • Hwang, Yo-Seop;Kim, Hyun-Woo;Kim, Tae-Jun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.970-976
    • /
    • 2012
  • In this paper, a single LRF has been used to produce a 3D map for the mobile robot navigation. The 2D laser scanners are used for mobile robots navigation, where the laser scanner is applied to detect a certain level of area by the straight beam. Therefore it is limited to the usages of 2D obstacle detection and avoidance. In this research, it is designed to complement a mobile robot system to move up and down a single LRF along the yaw axis. During the up and down motion, the 2D data are stacked and manipulated to build a 3D map. Often a single LRF data are mixed with Gaussian and impulse noises. The impulse noises are removed out by the hybrid median filter designed in this research. The 2D data which are improved by deleting the impulse noises are layered to build the 3D map. Removing impulse noises while preserving the boundary is a main advantages of the hybrid median filter which has been used widely to improve the quality of images. The effectiveness of this hybrid median filter for rejecting the impulse noises has been verified through the real experiments. The performance of the hybrid median filter is evaluated in terms of PSNR (Peak Signal to Noise Ratio) and the processing time.