• Title/Summary/Keyword: motion controller

Search Result 1,231, Processing Time 0.025 seconds

Reduced Order Model and Decoupled Control of TWO Cooperating Manipulators for Moving an Object (단일물체 이동작업을 위한 두 협동 매니퓰레이터의 감소차수 모델과 감결합 제어)

  • Kang, Seok-Won;Jeong, Kwang-Son;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.805-808
    • /
    • 1991
  • In this paper, dynamical model and control architecture are developed for the closed chain motion of two N-joint manipulators holding a rigid object. Controller consist of forward controller which is reduced order model and compensator that compensates for modeling error. Control laws are determined so as to decouple the force and position controlled degree of freedom(DOF) during motion of the system.

  • PDF

Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic (삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

Resolved Motion Control of the Robot Manipulator using Neural Network (신경회로망을 이용한 로보트 매니츌레이터의 Resolved Motion제어기의 설계)

  • 송문철;조현찬;이홍기;전홍태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.519-526
    • /
    • 1990
  • In this paper we propose the resolved motion controller using a neural network for a robot manipulator. Neural identifier designed by a neural network is trained by using a feedback force as an error signal. The identifier approximates the output of a unknown nonlinear system by monitoring both the input and the output of this system. If the neural network is sufficiently trained well, it does not require either strict modelling of the manipulator or precise parameter estimation. The effectiveness of the proposed controller is demonstrated by computer simulation using a two-link planar robot.

  • PDF

Rate Control of Very Low Bit-rate Video Coder Using Fuzzy Quantization (퍼지 양자화에 의한 초저전송율 동영상 부호기의 율 제어)

  • 양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.189-192
    • /
    • 2000
  • A fuzzy controller for the evaluation of the quantization parameters in the H.263 coder has been introduced. We adopted a Mamdani fuzzy controller with centroid defuzzification. The inputs are variance, entropy, current motion vector and previous motion vector. This results is obtained a effective rate control technique using fuzzy Quantization.

  • PDF

A study on the optimal tuning of the hydraulic motion driver parameter by using RCGA (유압 모션 제어기의 최적 제어인자 튜닝에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, 2 degree of freedom PID controller is added to the conventional feed-forward controller for the purpose of improving its limitations such as set-point of tracking performance and disturbance suppression performance in the conventional PID controller. And the controller parameters optimization as a Real Coded Genetic Algorithm (RCGA) is used. Simulation and experiments verify the performance of the controller.

High-Performance Tracking Controller Design for Rotary Motion Control System (회전운동 제어시스템을 위한 고성능 추적제어기의 설계)

  • Kim, Youngduk;Park, Su Hyeon;Ryu, Seonghyun;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Study on Mitigation of Negative Damping Phenomenon and Improvement of Power Performance of a Floating Offshore Wind System Using Peak Shaving Control (피크쉐이빙 제어를 적용한 부유식 해상풍력시스템의 네거티브 댐핑 현상 완화 및 출력 성능 개선 연구)

  • Jungtae Kim;Jaehoon Son;Kwansu Kim;Hyeokjun Koh;Jongpo Park
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, the resonant motion of a floating offshore wind system due to negative damping was mitigated by peak shaving algorithms of the NREL ROSCO controller, and the decreased gains of the blade pitch controller by the gain detuning method for the floating system was increased to the gains of onshore baseline controller to improve the power performance of the turbine. To check the performance of the controller, the dynamic responses between the existing gain-detuned pitch controller and the ROSCO controller with peak shaving control for an OC4 floating offshore wind system were compared. As a result of DLC1.1 at near-rated wind speed, when peak shaving was applied, the average generator power decreased by 1.9%, but it was confirmed that the standard deviation was reduced and stability was improved with fast pitch regulation. In addition, since peak shaving reduces the maximum thrust of the rotor, was confirmed that not only are the loads of the blades and tower reduced, but the surge motion of the floater is also reduced, and the tension of the mooring lines is reduced.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Development of a New 6-DOF Parallel-type Motion Simulator (6자유도 병렬형 모션 시뮬레이터 개발)

  • Kim, Han-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • This paper presents the development of a new 6-DOF parallel-kinematic motion simulator. The moving platform is connected to the fixed base by six P-S-U (Prismatic-Spherical-Universal) serial chains. Comparing with the well-known Gough-Stewart platform-type motion simulator, it uses commercialized linear actuators mounted at the fixed base whereas a 6-UPS manipulator uses telescopic linear ones. Therefore, the proposed motion simulator has the advantages of easier fabrication and lower inertia over a 6-UPS counterpart. Furthermore, since most forces acting along the legs are transmitted to the structure of linear actuators, smaller actuation forces are required. The inverse position and Jacobian matrix are analyzed. In order to further increase workspace, inclined arrangement of universal joints is introduced. The optimal design considering workspace and force transmission capability has been performed. The prototype motion simulator and PC-based real-time controller have been developed. Finally, position control experiment on the prototype has been performed.