• Title/Summary/Keyword: montmorillonite(MMT)

Search Result 100, Processing Time 0.02 seconds

Effect of Organic Modifiers and Mixing Times on the Properties of Unsaturated Polyester/Montmorillonite Nanocomposite (유기 개질제의 종류와 혼합 시간에 따른 불포화 폴리에스터/ 몬모릴로나이트 나노복합체의 제조 및 특성)

  • 김호겸;이동호;서관호;김우식;박수영;민경은
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.589-595
    • /
    • 2003
  • Unsaturated polyester (UP) nanocomposite with montmorillonite (MMT) which contains different types of organic modifiers far nano-filler have been prepared to investigate the effect of chemical structure of organic modifiers and mixing time of all components on properties of products. It was found that the morphology and various physical properties of UP/MMT nanocomposites were influenced by properties of organic modifiers of MMTs. It was also confirmed that the content of MMT does not significantly affect properties of UP/MMT nanocomposites.

A Study on the Mechanical Properties of Organo-clay Filled NR/MMT Nanocomposites (Organo-Clay를 이용한 NR/MMT 나노복합체의 기계적 물성에 관한 연구)

  • Oh, Woo-Taek;Lee, Eun-Kyoung;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.455-465
    • /
    • 2009
  • In this study, Organo-montmorillonite(MMT) was synthesized by intercalation of various amine(Octylamine, Dodecylamine, Dimethyldodecylamine, Octadecylamine) compounds into layered silicate. Natural Rubber(NR)/MMT nanocomposites were prepared by reinforcement of Organo-MMT. X-ray diffraction(XRD) and Scanning electron microscope(SEM) were employed to characterize the layer distance of Organo-MMT and the morphology of the NR/MMT nanocomposites. The structures of the synthesized Organo-MMTs were analyzed by the measurement of FT-IR. Cure characteristics, surface free energy and mechanical properties such as tensile strength, modulus and hardness of NR/MMT nanocomposites were carefully studied by contact angle meter, ODR, UTM, and hardness tester. FT-IR analysis showed a insertion of the alkyl and amine chains into the interlayers of the MMT. It was shown that the cure time of the organo-MMT was more decreased than that of $Na^+$-MMT. Surface free energy and tensile strength of the NR/DDA-MMT nanocomposite were the highest. NR/ODA-MMT nanocomposite was the highest in hardness.

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application

  • Purwanto, Mochammad;Widiastuti, Nurul;Gunawan, Adrian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.375-381
    • /
    • 2021
  • Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Evaluation on Dielectric Properties of Epoxy/Montmorillonite Nanocomposites (에폭시/몬모릴로나이트 나노복합재료의 유전특성 평가)

  • Jang, Yong-Kyun;Kim, Woo-Nyon;Kim, Jun-Kyung;Park, Min;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.492-497
    • /
    • 2006
  • The epoxy composites are prepared with mixing temperature of epoxy/montmorillonite (MMT) melt master batch and the dielectric properties of the composites are also compared with intercalation of MMT. The exfoliation mainly occurrs iii the low content of MMT composites, while in the composites with high content of MMT the interspacing distance increases as the mixing temperature of epoxy/MMT master batch is increased. Class transition temperature of the composite which the MMT are effectively exfoliated is increased with the appropriate postcuring condition. Since the orientation polarization of dipoles in the epoxy molecules is restricted by the clay nanolayers exfoliated, the dielectric constant and dielectric loss of the composites are reduced. Furthermore, the dielectric properties could be improved by controling the mixing temperature and time of epoxy/MMT master batch as well as postcuring condition.

A Study on the Dispersion Characteristics of PP/MMT Composites (PP/MMT 복합체의 분산특성에 관한 연구)

  • 김규남;김형수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.374-381
    • /
    • 2000
  • Composites of polypropylene (PP) and organically modified montmorillonite (org-MMT) were prepared by melt mixing in an intensive mixer. Three grades of PP's having different melt viscosities were employed to investigate the dispersion characteristics of the composites with various org-MMT's. Depending on the matrix viscosity and nature of the interlayer in org-MMT significant variations of the phase structure were found. Under the constant mixing condition and matrix viscosity, intercalation of PP chains into the interlayer of org-MMT was possible when initial interlayer distance and packing density were maintained in the optimum range; by which the loss in entropy associated with the confinement of polymer chains was compensated. The state of org-MMT particle dispersion was improved by increasing the matrix viscosity only in the case that dispersed phase is suitable for intercalation process thermodynamically, otherwise little variation was occurred regardless of the matrix viscosity. Due to the lack of specific interaction between PP and erg-MMT considered here, although the intercalation was possible for an appropriate org-MMT, the composites revealed unstable phase structure upon increasing the mixing time, which was characterized by agglomeration of the org-MMT domains.

  • PDF

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

Effect of Photoinitiator System on Mechanical Properties and Water Sorption Behavior of Urethane Acrylate/MMT Nanocomposite by UV Radiation Curing (UV 경화형 우레탄 아크릴레이트/MMT 나노복합체의 기계적 성질과 내흡수성에 대한 광개시제의 영향)

  • Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.256-260
    • /
    • 2015
  • The addition of montmorillonite (MMT) in the UV curable polyurethane diacrylate based resins was investigated to fabricate nanocomposites with improved mechanical properties and water sorption behavior using different photoinitiator systems. As a result, it was observed that 1 wt% of clay loading fairly improved tensile resistance and water uptake behavior. It can be also confirmed that dual photoinitiator system consisted of benzyldimethyl ketal and bisacyl phosphine oxide exhibited enhanced energy absorption band 340~450 nm even with 3 wt% of MMT concentration, which may affect the curing behavior of nanocomposite especially in our UV lamp system.

Effects of Copper-bearing Montmorillonite (Cu-MMT) on Escherichia coli and Diarrhea on Weanling Pigs

  • Xia, M.S.;Hu, C.H.;Xu, Z.R.;Ye, Y.;Zhou, Y.H.;Xiong, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1712-1716
    • /
    • 2004
  • Copper-bearing montmorillonite (Cu-MMT) was produced by $Cu^{2+}$ cation exchange reaction. X-ray diffraction analysis showed that that the (001) basal spacing of the MMT crystal lattice increased from 1.544 to 1.588 nm after $Cu^{2+}$ exchange. This indicated that $Cu^{2+}$ entered into interlayer position of MMT as a hydrated cation or composite cation. In vitro results indicated that Cu-MMT had antibacterial activity on Escherichia coli $K_{88}$. Cu-MMT had unbalanced positive charge after cation exchange. Its antibacterial activity resulted from two aspects, one was electrostatic attraction which made E. coli $K_{88}$ being adhered on the montmorillonite surface, the other was the $Cu^{2+}$ slowly released, which could kill bacteria. In an in vivo study, four replicates of eight weanling pigs were assigned to each of two dietary treatments to study the effects of Cu-MMT on diarrhea, E. coli in the lumen of the jejunum and morphology of jejunal mucosa. As compared to the control, supplementation of the diet with 0.2% Cu-MMT improved average daily gain by 12.50% (p<0.05) and decreased F/G by 9.42% (p<0.05). The mean diarrhrea incidence was decreased by 71.80% (p<0.05). The viable counts of Escherichia coli in jejunal contents were significantly reduced (p<0.05). Villus height and the villus height to crypt depth ratio at the jejunal mucosa were increased by 19.09% (p<0.05) and 37.10% (p<0.05), respectively.