Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials

Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질

  • Kim, Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Hwang, Eun-Ju (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Jea-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Hyung-Il (Department of Industrial Chemistry, Chungnam National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 김석 (한국화학연구원 화학소재연구부) ;
  • 황은주 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 김형일 (충남대학교 정밀공업화학과) ;
  • 박수진 (인하대학교 화학과)
  • Published : 2007.07.31

Abstract

In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

본 연구에서는 poly(ethylene oxide) (PEO), 가소제인 ethylene carbonate(EC), 리튬염인 $LiClO_4$ 그리고 $Na^+-MMT/organic$ MMT를 이용하여 고분자/층상 실리카 나노복합재료(polymer/(layered silicate) nanocomposites, PLSN)를 제조하였으며, organic MMT의 첨가에 따른 고분자 매트릭스에 미치는 영향을 이온전도도를 통하여 관찰하였다. 리튬전지의 전해질로서의 응용을 위해, $Na^+$를 양이온으로 갖는 순수한 MMT($Na^+-MMT$)를 유기화한 nanoclay(organic-MMT)를 사용하였다. 그 결과, 층간 거리 및 소수성이 증가하며 이와 같은 특성은 PEO와의 나노복합체를 형성할 때 MMT의 박리 거동에 영향을 미치는 것을 확인할 수 있었다. 또한, 이온전도도에서는 organic MMT가 순수한 $Na^+-MMT$보다 우수함을 나타내었으며, methyl dihydrogenated tallow ammonium으로 개질된 MMT(MMT-2OA)를 첨가하였을 때 가장 높은 이온전도도를 보였다.

Keywords

References

  1. W. A. van Schalkwijk and B. Scrosati, Advances in Lithium-Ion Batteries, Kluwer Academic, New York, 2002
  2. G. A. Nazri and G. Pistoia, Lithium Batteries, Kluwer Academic, New York, 2004
  3. T. Moon, C. J. Kim, and B. W. Park, J. Power Sources, 155, 381 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.004
  4. F. B. Dias, L. Plomp, and B. J. Veldhuis Jakobert, J. Power Sources, 88, 169 (2000)
  5. W. H. Meyer, Adv. Meter., 10, 439 (1998)
  6. J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Power Sources, 77, 183 (1999)
  7. D. E. Fenton, J. M. Parker, and P. V. Wright, Polymer, 14, 589 (1973)
  8. G. B. Appetecchi, J. H. Shin, F. Alessandrini, and S. Passerini, J. Power Sources, 143, 236 (2005) https://doi.org/10.1016/j.jpowsour.2004.11.039
  9. D. W. Kim, J. Power Sources, 87, 78 (2000)
  10. J. M. Tarascon and M. B. Armand, Nature, 414, 359 (2001)
  11. F. M. Gray, Polymer Electrolytes, Royal Society of Chemistry, Cambridge, 1997
  12. P. Aranda and E. R. Hitzky, Acta Polym., 45, 59 (1994)
  13. J. H. Wu and M. M. Lerner, Chem. Meter., 5, 835 (1990)
  14. E. R. Hitzky, P. Aranda, B. Casal, and J. C. Galvan, Adv. Meter., 7, 180 (1995)
  15. W. Chen, Q. XU, and R. Z. Yuan, J. Mater. Sci., Lett., 18, 711 (1999)
  16. S. Kim, J. Y. Kang, S. G. Lee, J. R. Lee, and S. J. Park, Polymer(Korea), 29, 403 (2005)
  17. S. Kim, E. J. Hwang, Y. Jung, M. Han, and S. J. Park, Colloids Surf. A: Physicochem. Eng. Asp., in press
  18. R. A. Vaia, H. Ishii, and E. P. Giannelis, Chem. Mater., 5, 1601 (1993)
  19. S. H. Sheffield, Mat. Res. Bull., 4, 929 (1979)
  20. B. Zhu, L. Xue, D. Wang, and W. Yu, J. Inorg. Mater., 2, 176 (1987)
  21. W. Yu, D. Wang, B. Zhu, S. Wang, and L. Xue, Solid State Commun., 61, 271 (1987)
  22. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci., 35, 2289 (1997)
  23. S. J. Park. D. I. Sea. and J. R. Lee, J. Colloid Interf. Sci., 251, 160 (2002)
  24. P. Aranda. Y. Mosqueda, E. P. Cappe, and E. R. Hitzky. J. Polym. Sci.; Part B: Polym. Phys., 41, 3249 (2003) https://doi.org/10.1002/polb.10704
  25. J. Liu, J. Pan, and J. Chen. Solid State Ionics, 82, 225 (1995)
  26. H. J. Wall, M. W. Riley, R. Singhal, R. J. Spontak, P. S. Fedkiw, and S. A. Khan, Adv. Funct. Mater., 13. 710 (2003) https://doi.org/10.1002/adfm.200304333
  27. S. M. Therias, B. Mailhot. J. L. Gardette, C. D. Silva, B. Haidar, and A. Vidal, Polym. Degrad. Stebil., 90, 78 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.01.040
  28. R. A. Vaia. B. B. Sauer, O. K. Tse, and E. P. Giannelis, J. Polym. Sci: Part B; Polym. Phys., 35, 57 (1997)
  29. T. Sreekanth, M. J. Reddy, S. Subramanyam, and U. V. Subba Rao, Mater. Sci Eng. B. 64, 107 (1999)
  30. M. J. Reddy and P. P. Chu, Electrochim. Acta, 47, 1189 (2002)
  31. M. Kurian, M. E. Galvin, P. E. Trapa, D. R. Sadoway, and A. M. Mayes, Electrochim. Acta, 50, 2125 (2005) https://doi.org/10.1016/j.electacta.2004.09.020
  32. F. Croce, L. Persi, B. Scrosati, F. Serriano-Fiorv, E. Plichta, and M. A. Hendrickson, Electrochim. Acta, 46. 2457 (2001)