A Study on the Dispersion Characteristics of PP/MMT Composites

PP/MMT 복합체의 분산특성에 관한 연구

  • Published : 2000.05.01

Abstract

Composites of polypropylene (PP) and organically modified montmorillonite (org-MMT) were prepared by melt mixing in an intensive mixer. Three grades of PP's having different melt viscosities were employed to investigate the dispersion characteristics of the composites with various org-MMT's. Depending on the matrix viscosity and nature of the interlayer in org-MMT significant variations of the phase structure were found. Under the constant mixing condition and matrix viscosity, intercalation of PP chains into the interlayer of org-MMT was possible when initial interlayer distance and packing density were maintained in the optimum range; by which the loss in entropy associated with the confinement of polymer chains was compensated. The state of org-MMT particle dispersion was improved by increasing the matrix viscosity only in the case that dispersed phase is suitable for intercalation process thermodynamically, otherwise little variation was occurred regardless of the matrix viscosity. Due to the lack of specific interaction between PP and erg-MMT considered here, although the intercalation was possible for an appropriate org-MMT, the composites revealed unstable phase structure upon increasing the mixing time, which was characterized by agglomeration of the org-MMT domains.

Polypropylene (PP)과 중간층이 유기성분으로 치환된 montmorillonite (org-MMT)의 복합체를 회분식 혼련기에서 용융혼련하여 org-MMT의 구조, 연속상의 점도, 그리고 혼련시간이 복합체의 상구조 형성에 미치는 영향에 대하여 고찰하였다. 혼련조건과 연속상의 점도가 일정할 때 PP사슬이 여러 가지 org-MMT의 중간층으로 삽입되는 정도는 org-MMT자체의 구조 인자에 의하여 결정되었다. 즉, 특정한 상호인력이 존재하지 않는 경우에는 삽입과정에 발생하는 고분자 사슬의 엔트로피 감소를 보충할 수 있는 환경의 조성이 필수적이며 이러한 조건은 최적의 중간층높이와 packing density가 유지될 때 만족되었다. 열역학적으로 삽입이 가능한 org-MMT의 분산 상태는 연속상의 점도가 증가할수록 호전되었으나 그렇지 못한 경우는 연속상의 점도상승이 분산상태의 향상을 유도하지 못하였다. 본 연구에서 고려된 PP/org-MMT 복합체들은 흔련 시간이 증가됨에 따라 뭉침 현상에 의하여 상구조가 변하는 불안정성을 나타내었다.

Keywords

References

  1. J. Polym. Sci., Part A: Polym. Chem. v.33 P. B. Messersmith;E. P. Giannelis
  2. Macromolecules v.30 R. Krishnamoorti;E. P. Giannelis
  3. Chem. Mater. v.5 R. A. Vaia;H. Ishii;E. P. Giannelis
  4. Macromolecules v.28 R. A. Vaia;K. D. Jandt;E. J. Krammer;E. P. Giannelis
  5. Chem. Mater. v.8 R. A. Vaia;K. D. Jandt;E. J. Krammer;E. P. Giannelis
  6. ANTEC Technical Papers J. Solc;K. Nichols;M. Galobardes;E. P. Giannelis
  7. J. Appl. Polym. Sci. v.63 A. Usuki;M. Kato;A. Okada;T. Kurauchi
  8. J. Appl. Polym. Sci. v.66 M. Kato;A. Usuki;A. Okada
  9. Macromolecules v.30 M. Kawasumi;N. Hasegawa;M. Kato;A. Usuki;A. Okada
  10. J. Appl. Polym. Sci. v.71 L. Liu;Z. Qi;X. Zhu
  11. Ph. D. Thesis R. A. Vaia
  12. The Korean J. of Rheology v.8 S. C. Lee;H. Kim
  13. J. Polym. Sci., Polym. Phys. Ed. v.22 C. M. Roland;G. G. A. Bohm