• Title/Summary/Keyword: monthly precipitation

Search Result 383, Processing Time 0.026 seconds

Effect of Climate Factors on Tree-Ring Growth of Larix leptolepis Distributed in Korea (기후인자가 일본잎갈나무의 연륜생장에 미치는 영향 분석)

  • Lim, Jong Hwan;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.122-131
    • /
    • 2016
  • This study was conducted to analyze the effect of climatic variables on tree-ring growth of Larix leptolepis distributed in Korea by dendroclimatological method. For this, annual tree-ring growth data of Larix leptolepis collected by the $5^{th}$ National Forest Inventory were first organized to analyze yearly growth patterns of the species. To explain the relationship between tree-ring growth of Larix leptolepis and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, six clusters were identified. In addition, index chronology of Larix leptolepis for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was finally conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Larix leptolepis and for predicting changes in tree growth patterns caused by climate change.

Volume-Weighted Ion Cocentration of Rainwater in Taean Area (태안지역 강우의 화학성분 특성)

  • Lee, Jong-Sik;Jung, Goo-Bok;Kim, Jin-Ho;Kim, Won-Il;Yun, Sun-Gang;Im, Jae-Cheal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.284-288
    • /
    • 2001
  • This study was carried out to investigate the chemical properties of rainwater in Taean area. Rainwater was collected during seven months from April to October in 2000, and analyzed for its chemical composition. The pH of rainwater at April and May were higher than those from June to September. Occurrence rate of rain above pH 5.6 was 42.1%, which showed the highest ratio from rainwater samples during investigation periods. Those of pH $5.0{\sim}5.6$ and $4.5{\sim}5.0$ range were 21.1 and 31.6%, respectively. The major cation in rainwater were $Ca^{2+}$ and $NH_4\;^+$, and $SO_4\;^{2-}$ was more than 50% of total anion composition. Monthly variation of acidity neutralization capacity by $Ca^{2+}$ and $NH_4\;^+$ was decreased during rainy season. The $nss-SO_4\;^{2-}/NO_3\;^-$, ratio was 2.0 which means $SO_4\;^{2-}$ contributed to acidity of rainwater two times more than $NO_3\;^-$.

  • PDF

The Analysis of PM10 Concentration and Emission Contribution in the Major Cities of Korea (한반도 주요 대도시의 PM10 농도 특성 및 배출량과의 상관성 분석)

  • Kang, Minsung;Kim, Yoo-Keun;Kim, Taehee;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1065-1076
    • /
    • 2016
  • This study analyzes the $PM_{10}$ characteristics (particulate matter with aerodynamic diameter less than $10{\mu}m$), concentration, and emissions in eight large South Korean cities (Seoul, Incheon, Daejeon, Daegu, Gwangju, Ulsan, Busan, Jeju). The annual median of $PM_{10}$ concentration showed a decline of $0.02{\sim}1.97{\mu}g/m^3$ in the regions, except for Incheon, which recorded an annual $0.02{\mu}g/m^3$ increase. The monthly distribution levels were high in spring, winter, fall, and the summer, but were lower in summer for all regions except for Ulsan. These differences are thought to be due to the dust in spring and the cleaning effect of precipitation in summer. The variation in concentrations during the day (diurnal variation) showed that $PM_{10}$ levels were very high during the rush hour and that this was most extreme in the cities (10.00 and 18.00-21.00). The total annual $PM_{10}$ emissions analysis suggested that there had been a general decrease, except for Jeju. On-road mobile (OM) sources, which contributed a large proportion of the particulates in most regions, decreased, but fugitive dust (FD) sources increased in the remaining regions, except for Daegu. The correlation analysis between $PM_{10}$ concentrations and emissions showed that FD could be used as a valid, positive predictor of $PM_{10}$ emissions in Seoul (74.5% (p<0.05)), Dajeon (47.2% (p<0.05)), and Busan (59.1% (p<0.01)). Furthermore, industrial combustion (IC) was also a significant predictor in Incheon (61.7% (p<0.01)), and on-road mobile (OC) sources were a valid predictor in Daegu (24.8% (p<0.05)).

Estimation of Rice Yield by Province in South Korea based on Meteorological Variables (기상자료를 이용한 남한지역 도별 쌀 생산량 추정)

  • Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.599-605
    • /
    • 2019
  • Rice yield (kg 10a-1) in South Korea was estimated by meteorological variables that are influential factors in crop growth. This study investigated the possibility of anticipating the rice yield variability using a simple but an efficient statistical method, a multiple linear regression analysis, on the basis of the annual variation of meteorological variables. Due to heterogeneous environmental conditions by region, the yearly rice yield was assessed and validated for each province in South Korea. The monthly mean meteorological data for the period 1986-2018 (33 years) from 61 weather stations provided by Korean Meteorological Administration was used as the independent variable in the regression analysis. An 11-fold (leave-three-out) cross-validation was performed to check the accuracy of this method estimating rice yield at each province. This result demonstrated that temporal variation of rice yield by province in South Korea can be properly estimated using such concise procedure in terms of correlation coefficient (0.7, not significant). Furthermore, the estimated rice yield well captured spatial features of observation with mean bias of 0.7 kg 10a-1 (0.15%). This method may offer useful information on rice yield by province in advance as long as accurate agro-meteorological forecasts are timely obtained from climate models.

An Agroclimatic Data Retrieval and Analysis System for Microcomputer Users(CLIDAS) (퍼스컴을 이용한 농업기후자료 검색 및 분석시스템)

  • 윤진일;김영찬
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.253-263
    • /
    • 1993
  • Climatological informations have not been fully utilized by agricultural research and extension workers in Korea due mainly to inaccessbilty to the archived climate data. This study was initiated to improve access to historical climate data gathered from 72 weather stations of Korea Meteorological Administration for agricultural applications by using a microcomputer-based methodology. The climatological elements include daily values of average, maximum and minimum temperature, relative humidity, average and maximum wind speed, wind direction, evaporation, precipitation, sunshine duration and cloud amount. The menu-driven, user-friendly data retrieval system(CLIDAS) provides quick summaries of the data values on a daily, weekly and monthly basis and selective retrieval of weather records meeting certain user specified critical conditions. Growing degree days and potential evapotranspiration data are derived from the daily climatic data, too. Data reports can be output to the computer screen, a printer or ASCII data files. CLIDAS can be run on any IBM compatible machines with Video Graphics Array card. To run the system with the whole database, more than 50 Mb hard disk space should be available. The system can be easily upgraded for further expansion of functions due to the module-structured design.

  • PDF

Analysing the Relationship Between Tree-Ring Growth of Quercus acutissima and Climatic Variables by Dendroclimatological Method (연륜기후학적 방법에 의한 상수리나무의 연륜생장과 기후인자와의 관계분석)

  • Moon, Na Hyun;Sung, Joo Han;Lim, Jong Hwan;Park, Ko Eun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • This study was conducted to analyze the relationship between tree-ring growth of Quercus acutissima and climatic variables by dendroclimatological method. Annual tree-ring growth data of Quercus acutissima collected by the $5^{th}$ National Forest Inventory (NFI5) were organized to analyze the spatial distribution of the species growth pattern. To explain the relationship between tree-ring growth of Quercus acutissima and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, four clusters were identified. In addition, index chronology of Quercus acutissima for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Quercus acutissima and for predicting changes in tree growth patterns caused by climate change.

A Study on the Corelation between the Variation of Land Cover and Groundwater Recharge Using the Analysis of Landsat-8 OLI Data (Landsat-8 위성을 통한 토지피복 변화와 지하수 함양량 상관성 고찰)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.347-378
    • /
    • 2020
  • Based on monthly average groundwater recharge over a nearly 10 year period, results of fully integrated hydrologic modeling of SWAT-MODFLOW, land cover, land use, soil type and hydrologic response unit (HRU) was used to assess the dominant influencing factors of groundwater recharge spatial patterns in Jangseong district. As dominant factors, land cover was FRSE (forest-evergreen) and soil type was Samgag. Landsat-8 OLI imaging spectrometer data were acquired in the period 2003 to 2004 and seasonal bare soil lines (BSL) were estimated through NIR-RED plot. Extent of slope of BSL was from 1.092 to 1.343 and the intercept was from -0.004 to -0.015. To know correlation between spatial groundwater recharge and soil-vegetation indices (PVI, NDVI, NDTI, NDRI), this study employed frequency and regression analysis. On May, RED band increased up 3 to 4 times compared to other seasons and only one turning point appeared as recharge-index with upward parabola bell shape as results of existing research. Considering precipitation, if the various studies for relationship between groundwater recharge and soil-vegetation index just like NDVI are performed, it is possible to estimate groundwater recharge through analyzing remote sensing data.

Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections (강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교)

  • Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.249-258
    • /
    • 2020
  • Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.

Outlook of Discharge for Daecheong and Yongdam Dam Watershed Using A1B Climate Change Scenario Based RCM and SWAT Model (A1B기후변화시나리오 기반 RCM과 SWAT모형을 이용한 대청댐 및 용담댐 유역 유출량 전망)

  • Park, Jin-Hyeog;Kwon, Hyun-Han;No, Sun-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.929-940
    • /
    • 2011
  • In this study, the future expected discharges are analyzed for Daecheong and Yongdam Dam Watershed in Geum River watershed using A1B scenario based RCM with 27 km spatial resolutions from Korea Meteorological Agency and SWAT model. The direct use of GCM and RCM data for water resources impact assessment is practically hard because the spatial and temporal scales are different. In this study, the problems of spatial and temporal scales were settled by the spatial and temporal downscaling from watershed scale to weather station scale and from monthly to daily of RCM grid data. To generate the detailed hydrologic scenarios of the watershed scale, the multi-site non-stationary downscaling method was used to examine the fluctuations of rainfall events according to the future climate change with considerations of non-stationary. The similarity between simulation and observation results of inflows and discharges at the Yongdam Dam and Daecheong Dam was respectively 90.1% and 84.3% which shows a good agreement with observed data using SWAT model from 2001 to 2006. The analysis period of climate change was selected for 80 years from 2011 to 2090 and the discharges are increased 6% in periods of 2011~2030. The seasonal patterns of discharges will be different from the present precipitation patterns because the simulated discharge of summer was decreased and the discharge of fall was increased.

Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea (기후변화에 따른 황룡강 유역의 오염부하 유출량 변화 분석)

  • Park, Min Hye;Cho, Hong-Lae;Koo, Bhon Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.185-196
    • /
    • 2015
  • A conceptual watershed model HSPF (Hydrological Simulation Program-Fortran) was applied to the Hwangryong river watershed to evaluate climate change effects on pollution loads of the river. For modeling purposes, the Hwangryong river watershed was divided into 7 sub-watersheds. The model was calibrated and validated for the river discharges against the data observed in 2011 at several monitoring stations. The RCP scenarios were set up for the model simulations after being corrected by change factor method. The simulation results of the RCP 4.5 scenario indicate that the annual river discharge and concentrations of BOD, TN, TP of the Hwangryong river will continually increase during the second-half of the 21st century. As for the RCP 8.5 scenario, the simulations results imply that the pollution loads will increase during the middle of the 21st century reflecting the pattern of precipitation. Monthly distributions of the pollution loads for the RCP 4.5 and the RCP 8.5 scenarios show it will increase the most in September and February, respectively.