• Title/Summary/Keyword: monolithic microwave integrated circuit (MMIC)

Search Result 119, Processing Time 0.025 seconds

The Design and implementation of a 5.8GHz band LNA MMIC for Dedicated Short Range Communication (단거리전용통신을 위한 5.8GHz대역 LNA MMIC 설계 및 구현)

  • 문태정;황성범;김용규;송정근;홍창희
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.549-554
    • /
    • 2003
  • In this paper, we have designed and implemented by a monolithic microwave integrated circuit(MMIC) of a 5.8GHz-band low noise amplifier (LNA) composed of receiver front-end(RFE) in a on-board equipment system for dedicated short range communication. The designed LNA is provided with two active devices, matching circuits, and two drain bias circuits. Operating at a single supply of 3V and a consumption current of 18mA, The gain at center frequency 5.8GHz is 13.4dB, NF is 1.94dB, Input IP3 is -3dBm, S$_{11}$ is -18dB, and S$_{22}$ is -13.3dB. The circuit size is 1.2 $\times$ 0.7 $\textrm{mm}^2$.>.

Q-band MMIC Driver and Power Amplifiers for Wideband wireless Multimedia (Q-band 광대역 무선 멀티미디어용 MMIC구동 및 전력증폭기)

  • 강동민;이진희;윤형섭;심재엽;이경호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.167-170
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) driver and power amplifiers for WLAN are presented using 0.2${\mu}{\textrm}{m}$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT). In each stage of the MMIC DA, a negative feedback is used for both broadband and good stability. The MMIC PA has employed a balanced configuration to overcome these difficulties and achieve high power with low VSWR over a wide frequency range. In the MMIC DA, the measurement results arc achieved as an input return loss under -4dB, an output return loss under -l0dB, a gain of 14dB, and a PldB of 17dB at C-band(36~ 44GHz). The chip size is 28mm$\times$1.3mm. The developed MMIC PA has the l0dB linear gain over 360Hz to 420Hz band and 22dBm PldB performance at 400Hz. The size of fabricated MMIC PA is 4mm x3mm. These results closely match with design results. This MMIC DA Sl PA will be used as the unit cells to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

A Decade-Bandwidth Distributed Power Amplifier MMIC Using 0.25 μm GaN HEMT Technology

  • Shin, Dong-Hwan;Yom, In-Bok;Kim, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.178-180
    • /
    • 2017
  • This study presents a 2-20 GHz monolithic distributed power amplifier (DPA) using a $0.25{\mu}m$ AlGaN/GaN on SiC high electron mobility transistor (HEMT) technology. The gate width of the HEMT was selected after considering the input capacitance of the unit cell that guarantees decade bandwidth. To achieve high output power using small transistors, a 12-stage DPA was designed with a non-uniform drain line impedance to provide optimal output power matching. The maximum operating frequency of the proposed DPA is above 20 GHz, which is higher than those of other DPAs manufactured with the same gate-length process. The measured output power and power-added efficiency of the DPA monolithic microwave integrated circuit (MMIC) are 35.3-38.6 dBm and 11.4%-31%, respectively, for 2-20 GHz.

10-GHz Band Voltage Controlled Oscillator (VCO) MMIC for Motion Detecting Sensors

  • Kim, Sung-Chan;Kim, Yong-Hwan;Ryu, Keun-Kwan
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • In this work, a voltage controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) was demonstrated for 10-GHz band motion detecting sensors. The VCO MMIC was fabricated using a $2-{\mu}m$ InGap/GaAs HBT process, and the tuning of the oscillation frequency is achieved by changing the internal capacitance in the HBT, instead of using extra varactor diodes. The implemented VCO MMIC has a micro size of $500{\mu}m{\times}500{\mu}m$, and demonstrates the value of inserting the VCO into a single chip transceiver. The experimental results showed that the frequency tuning characteristic was above 30 MHz, with the excellent output flatness characteristic of ${\pm}0.2dBm$ over the tuning bandwidth. And, the VCO MMIC exhibited a phase noise characteristic of -92.64 dBc/Hz and -118.28 dBc/Hz at the 100 kHz and 1 MHz offset frequencies from the carrier, respectively. The measured values were consistent with the design values, and exhibited good performance.

Design of Absorptive Type SPST MMIC Switch for MSM of Satellite Communication (위성통신용 MSM을 위한 흡수형 SPST MMIC 스위치의 설계 및 제작)

  • Yom In-Bok;Ryu Keun-Kwan;Shin Dong-Hwan;Lee Moon-Que;Oh Il-Duck;Oh Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.989-994
    • /
    • 2005
  • A MMIC(Monolithic Microwave Integrated Circuit) switch chip using InGaAs/GaAs p-HEMT process has been designed for MSM(Microwave Switch Matrix) of satellite communication system. An absorptive type MMIC switch is adopted for good reflection coefficients performances of input and output ports at both on and off states. And, a quarter wavelength impedance transformer is realized with lumped elements of MIM capacitor and spiral inductor for 3 GHz band to reduce the chip size. This MMIC switch covers the frequency range of $3.2\~3.6\;GHz$. According to the on-wafer measurement, the fabricated MMIC switch with miniature size of $1.6\;mm{\times}1.3\;mm$ demonstrates insertion loss below 2 dB and isolation above 56.8 dB, and the performance coincides with simulation results.

A 20 W GaN-based Power Amplifier MMIC for X-band Radar Applications

  • Lee, Bok-Hyung;Park, Byung-Jun;Choi, Sun-Youl;Lim, Byeong-Ok;Go, Joo-Seoc;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.181-187
    • /
    • 2019
  • In this paper, we demonstrated a power amplifier monolithic microwave integrated circuit (MMIC) for X-band radar applications. It utilizes commercial $0.25{\mu}m$ GaN-based high electron mobility transistor (HEMT) technology and delivers more than 20 W of output power. The developed GaN-based power amplifier MMIC has small signal gain of over 22 dB and saturated output power of over 43.3 dBm (21.38 W) in a pulse operation mode with pulse width of $200{\mu}s$ and duty cycle of 4% over the entire band of 9 to 10 GHz. The chip dimensions are $3.5mm{\times}2.3mm$, generating the output power density of $2.71W/mm^2$. Its power added efficiency (PAE) is 42.6-50.7% in the frequency bandwidth from 9 to 10 GHz. The developed GaN-based power amplifier MMIC is expected to be applied in a variety of X-band radar applications.

Monolithic Integrated Amplifier for Millimeter Wave Band (밀리미터파 대역 단일 집적 증폭기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3917-3922
    • /
    • 2010
  • In this paper, 3 stage amplifier MMIC was designed and fabricated with U-band optimized epitaxal pHEMT that produced by large signal characterization and modeling for 60 GHz band. The pHEMT used in this paper, the gate $0.12\;{\mu}m$ length and total gate width of $100\;{\mu}m$, $200\;{\mu}m$ has been modeled using the large signal designed with negative feedback and MCLF instead of MIM capacitor for improving stability. Fabricated MMIC $2.5{\times}1.5mm^2$ size, current about 40 mA, operating frequency 59.5~60.5 GHz, gain 19.9~18.6 dB, input matching characteristics -14.6~-14.7 dB, output matching characteristics -11.9~-16.3 dB and output -5 dBm characteristics were obtained.

Millimeter Wave MMIC Low Noise Amplifiers Using a 0.15 ${\mu}m$ Commercial pHEMT Process

  • Jang, Byung-Jun;Yom, In-Bok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • This paper presents millimeter wave monolithic microwave integrated circuit (MMIC) low noise amplifiers using a $0.15{\mu}m$ commercial pHEMT process. After carefully investigating design considerations for millimeter-wave applications, with emphasis on the active device model and electomagnetic (EM) simulation, we designed two single-ended low noise amplifiers, one for Q-band and one for V-band. The Q-band two stage amplifier showed an average noise figure of 2.2 dB with an 18.3 dB average gain at 44 GHz. The V-band two stage amplifier showed an average noise figure of 2.9 dB with a 14.7 dB average gain at 65 GHz. Our design technique and model demonstrates good agreement between measured and predicted results. Compared with the published data, this work also presents state-of-the-art performance in terms of the gain and noise figure.

  • PDF

RF Interconnection Technique of MMIC Microwave Switch Matrix for 60 dB On-to-off Isolation (60 dB 온-오프 격리도를 위한 통신 위성 중계기용 MMIC MSM의 RF 결합 방법)

  • Noh Youn-Sub;Jang Dong-Pil;Yom In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.134-138
    • /
    • 2006
  • The isolation performance of the S-band single-pole single-throw(SPST) monolithic microwave integrated circuit (MMIC) switch with two different RF-interconnection approaches, microstrip and grounded coplanar waveguide(GCPW) lines, are investigated. On-to-off isolation is improved by 5.8 dB with the GCPW design compared with the microstrip design and additional improvement of 6.9 dB is obtained with the coplanar wire-bond interconnection(CWBI) at a 3.4 GHz. The measured insertion loss and third-order inter-modulation distortion(IMD3) are less than 1.94 dB over $3.2{\sim}3.6\;GHz$ and greater than 64 dBc.

GaN HPA Monolithic Microwave Integrated Circuit for Ka band Satellite Down link Payload (Ka 대역 위성통신 하향 링크를 위한 GaN 전력증폭기 집적회로)

  • Ji, Hong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8643-8648
    • /
    • 2015
  • In this paper presents the design and demonstrate 8 W 3-stage HPA(High Power Amplifier) MMIC(Monolithic Microwave Integrated Circuits) for Ka-band down link satellite communications payload system at 19.5 GHz ~ 22 GHz frequency band. The HPA MMIC consist of 3-stage GaN HEMT(Hight Electron Mobility Transistors). The gate periphery of $1^{st}$ stage, $2^{nd}$ stage and output stage is determined $8{\times}50{\times}2$ um, $8{\times}50{\times}4$ um and $8{\times}50{\times}8$ um, respectively. The fabricated HPA MMIC shows size $3,400{\times}3,200um^2$, small signal gain over 29.6 dB, input matching -8.2 dB, output matching -9.7 dB, output power 39.1 dBm and PAE 25.3 % by using 0.15 um GaN technology at 20 V supply voltage in 19.5~22 GHz frequency band. Therefore, this HPA MMIC is believed to be adaptable Ka-band satellite communication payloads down link system.