• Title/Summary/Keyword: monolithic microwave integrated circuit (MMIC)

Search Result 119, Processing Time 0.029 seconds

이동통신 단말기용 MMIC의 시장동향 및 국내기술동향

  • 오재응
    • 전기의세계
    • /
    • v.49 no.7
    • /
    • pp.9-12
    • /
    • 2000
  • 현대의 이동통신 시장은 제3세대를 맞이하여 cellular에서 PCS(Personal Communication System) 그리고 IMT-2000으로 점차 광대역 서비스를 위한 하드웨어 및 소프트웨어가 발전하고 있다. 이러한 시스템을 구성하는 부품 중에서 신호를 송수신하는 부품은 전력소모와 소형화를 위한 노력이 지속적으로 진행되어 왔으며 hybrid 상태에서 점차적으로 one chip형태의 집적회로, 즉 MMIC(Monolithic Microwave Integrated Circuit)에 대한 요구가 급격히 증가되고 있다. 특히 이동통신단말기의 가장 고가의 RF부품인 전력증폭기의 요구사양이 우수한 선형성 및 전력효율이라는 측면에서 GaAs MMIC 기술이 주도적으로 쓰일 것이라는 면과 또한 여러형태의 이동통신이 더욱 높은 주파수대역으로 이동함에 따라 관련시장의 폭발적인 발전이 예상되고 있다. 전략 분석가인 Stephen Entwistle은 1999년의 GaAs IC시장의 규모를 22.5억불로 평가하였으며, CIBC World Market의 Earl Lum은 24억불수준으로 평가하였다. 2004년에는 110억불 수준에 이를 것으로 예상되고 있다. 본 논문의 전반부에서는 최근의 MMIC시장의 동향을 최신 article을 참고로 하여 정리하였으며, 후반에서는 최근의 관련 워크샵의 내용 중 국내의 MMIC기술현황을 간추려 요약하였다.

  • PDF

W-band Frequency Synthesizer Development Based on Interposer Technology Using MMIC Chip Design and Fabrication Results

  • Kim, Wansik;Yeo, Hwanyong;Lee, Juyoung;Kim, Young-Gon;Seo, Mihui;Kim, Sosu
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • In this paper, w-band frequency synthesizer was developed for frequency-modulated continuous wave (FMCW) radar sensors. To achieve a small size and high performance, We designed and manufactured w-band MMIC chips such as up-converter one-chip, multiplier, DA (Drive Amplifier) MMIC(Monolithic Microwave Integrated Circuit), etc. And interposer technology was applied between the W-band multiplier and the DA MMIC chip. As a result, the measured phase noise was -106.10 dBc@1MHz offset, and the frequency switching time of the frequency synthesizer was less than 0.1 usec. Compared with the w-band frequency synthesizer using purchased chips, the developed frequency synthesizer showed better performance.

The Design and Fabrication of X-Band MMIC Low Noise Amplifier for Active antennal using P-HEMT (P-HEMT를 이용한 능동 안테나용 X-Band MMIC 저잡음 증폭기 설계 및 제작)

  • 강동민;맹성재;김남영;이진희;박병선;윤형섭;박철순;윤경식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.506-514
    • /
    • 1998
  • The design and fabrication of X-band(11.7~12 GHz) 2-stage monolithic microwave integrated circuit(MMIC) low noise amplifier (LNA) for active antenna are presented using $0.15{\mu}m\times140{\mu}m$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT). In each stage of the LNA, a series feedback by using a source inductor is used for both input matching and good stability. The measurement results are achieved as an input return loss under -17 dB, an output return loss under -15dB, a noise figure of 1.3dB, and a gain of 17 dB at X-band. This results almost concur with a design results except noise figure(NF). The chip size of the MMIC LNA is $1.43\times1.27$.

  • PDF

AlGaN/GaN Based Ultra-wideband 15-W High-Power Amplifier with Improved Return Loss

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Shin, Dong-Hwan;Yom, In-Bok;Kim, Jae-Duk;Lee, Wang-Youg;Lee, Chang-Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.972-980
    • /
    • 2016
  • An ultra-wideband microwave monolithic integrated circuit high-power amplifier with excellent input and output return losses for phased array jammer applications was designed and fabricated using commercial $0.25-{\mu}m$ AlGaN/GaN technology. To improve the wideband performance, resistive matching and a shunt feedback circuit are employed. The input and output return losses were improved through a balanced design using Lange-couplers. This three-stage amplifier can achieve an average saturated output power of 15 W, and power added efficiency of 10% to 28%, in a continuous wave operation over a frequency range of 6 GHz to 18 GHz. The input and output return losses were demonstrated to be lower than -15 dB over a wide frequency range.

Epitaxial Layer Design for High Performance GaAs pHEMT SPDT MMIC Switches

  • Oh, Jung-Hun;Mun, Jae-Kyoung;Rhee, Jin-Koo;Kim, Sam-Dong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.342-344
    • /
    • 2009
  • From a hydrodynamic device simulation for the pseudomorphic high electron mobility transistors (pHEMTs), we observe an increase of maximum extrinsic transconductance and a decrease of source-drain capacitances. This gives rise to an enhancement of the switching speed and isolation characteristics as the upper-to-lower planar-doping ratios (UTLPDR) increase. On the basis of simulation results, we fabricate single-pole-double-throw transmitter/receiver monolithic microwave integrated circuit (MMIC) switches with the pHEMTs of two different UTLPDRs (4:1 and 1:2). The MMIC switch with a 4:1 UTLPDR shows about 2.9 dB higher isolation and approximately 2.5 times faster switching speed than those with a 1:2 UTLPDR.

  • PDF

A 4W GaAs Power Amplifier MMIC for Ku-band Satellite Communication Applications

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.501-505
    • /
    • 2015
  • In this paper, we demonstrated a 4W power amplifier monolithic microwave integrated circuit (MMIC) for Ku-band satellite communication applications. The used device technology relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) process. The 4W power amplifier MMIC has linear gain of over 30 dB and saturated output power of over 36.1 dBm in the frequency range of 13.75 GHz ~ 14.5 GHz. Power added efficiency (PAE) is over 30 %.

Broadband Amplifier Using Active Feedback Technique (Active Feeback를 이용한 MMIC 광대역 증폭기 설계)

  • Kang, T. S.;An, D.;Yoon, Y. S.;Rhee, J. K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.197-201
    • /
    • 2000
  • In this paper, a MMIC(Monolithic Microwave Integrated Circuit) broadband drive amplifier for wireless communication system has designed using active feedback method. The MMIC brodband amplifier was designed using 0.5$\mu\textrm{m}$ MESFET of ETRI library. Simulation results show that gain is 22 dB, and gain flatness ${\pm}$1 dB. Maximum output power 15 dBm and noise figure 2.5 dB in bandwidth 500 MHz ~3.0 GHz. The MMIC Broadband amplifer's chip area is 14mm${\times}$1.4mm.

  • PDF

Broadband power amplifier design utilizing RF transformer (RF 트랜스포머를 사용한 광대역 전력증폭기 설계)

  • Kim, Ukhyun;Woo, Jewook;Jeon, Jooyoung
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.456-461
    • /
    • 2022
  • In this paper, a two-stage single-ended power amplifier (PA) with broadband gain characteristics was presented by utilizing a radio frequency (RF) transformer (TF), which is essential for a differential amplifier. The bandwidth of a PA can be improved by designing TF to have broadband characteristics and then applying it to the inter-stage matching network (IMN) of a PA. For broadband gain characteristics while maintaining the performance and area of the existing PA, an IMN was implemented on an monolithic microwave integrated circuit (MMIC) and a multi-layer printed circuit board (PCB), and the simulation results were compared. As a result of simulating the PA module designed using InGaP/GaAs HBT model, it has been confirmed that the PA employing the proposed design method has an improved fractional bandwidth of 19.8% at a center frequency of 3.3GHz, while the conventional PA showed that of 11.2%.

밀리미터파 대역 세라믹 패키지 설계에 관한 연구

  • 서재옥;김진양;박성대;이우성;강남기;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.259-263
    • /
    • 2002
  • We design and characterize a millimeter-wave ceramic package in a frequency range from DC to 300Hz using the FEM(Finite Element Method) calculation. From these calculation results, the designed feed-through structure achieved 0.32 dB, 16.8 dB of the insertion loss and the return loss at 30 GHz respectively. This ceramic package will be useful for MMIC(Monolithic Microwave Integrated Circuit) modules.

  • PDF

30 GHz 세라믹 패키지의 제작 및 측정

  • 서재옥;김진양;박성대;이우성;강남기;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.147-151
    • /
    • 2002
  • We fabricated and characterized a millimeter-wave ceramic package in a frequency range from 6 to 40㎓ using the LTCC(Low Temperature Cofired Ceramic) Technology and TRL(Thru-Reflect-Line) calibration method. From these measurement results, the fabricated feed-through structure achieved 0.5 dB, 14 dB of the insertion loss and the return loss at 30 GHz respectively. This ceramic package will be useful for MMIC(Monolithic Microwave Integrated Circuit) modules.

  • PDF