• Title/Summary/Keyword: monoid ring

Search Result 24, Processing Time 0.018 seconds

Weak Normality and Strong t-closedness of Generalized Power Series Rings

  • Kim, Hwan-Koo;Kwon, Eun-Ok;Kwon, Tae-In
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.443-455
    • /
    • 2008
  • For an extension $A\;{\subseteq}\;B$ of commutative rings, we present a sufficient conditio for the ring $[[A^{S,\;\leq}]]$ of generalized power series to be weakly normal (resp., stronglyt-closed) in $[[B^{S,\;\leq}]]$, where (S, $\leq$) be a torsion-free cancellative strictly ordered monoid. As a corollary, it can be applied to the ring of power series in infinitely many indeterminates as well as in finite indeterminates.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

ON THE DIVISOR-CLASS GROUP OF MONADIC SUBMONOIDS OF RINGS OF INTEGER-VALUED POLYNOMIALS

  • Reinhart, Andreas
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.233-260
    • /
    • 2017
  • Let R be a factorial domain. In this work we investigate the connections between the arithmetic of Int(R) (i.e., the ring of integer-valued polynomials over R) and its monadic submonoids (i.e., monoids of the form {$g{\in}Int(R){\mid}g{\mid}_{Int(R)}f^k$ for some $k{\in}{\mathbb{N}}_0$} for some nonzero $f{\in}Int(R)$). Since every monadic submonoid of Int(R) is a Krull monoid it is possible to describe the arithmetic of these monoids in terms of their divisor-class group. We give an explicit description of these divisor-class groups in several situations and provide a few techniques that can be used to determine them. As an application we show that there are strong connections between Int(R) and its monadic submonoids. If $R={\mathbb{Z}}$ or more generally if R has sufficiently many "nice" atoms, then we prove that the infinitude of the elasticity and the tame degree of Int(R) can be explained by using the structure of monadic submonoids of Int(R).

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.