• Title/Summary/Keyword: monodisperse polymer

Search Result 64, Processing Time 0.031 seconds

Activated Physical Properties at Air-Polymer Interface

  • Kajiyama, Tisato
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning vis-coelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, E', and loss tangent, $tan\delta$, at a PS film surface with number-average molecular weights, $M_n$, smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when the $M_n$ is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature, $T_g$, at the surface was found to be markedly lower than the bulk $T_g$, and this discrepancy between the surface and bulk became larger with decreasing $M_n$. Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.

The Effect of Various Hydrophilic Acrylic Comonomers on Soap-Free Emulsion Polymerization of Styrene-Butadiene Rubber (Styrene-Butadiene 무유화제 유화공중합에서의 아크릴계 친수성 공단량체의 영향)

  • Chung, Huey-Sil;Lee, Chang-Sung;Kim, Byung-Kyu;Shin, Young-Jo
    • Elastomers and Composites
    • /
    • v.28 no.4
    • /
    • pp.267-273
    • /
    • 1993
  • A number of hydrophilic acrylic comonomers were incorporated into styrene-butadiene soap-free emulsion polymerization. It was found that reaction rate decreased according to : AN>AA>MMA>EA>IA>AAM>MA>HEMA. It was also observed that reaction rate increased with decreasing H-bonding factor contribution to the solubility parameter of the hydrophilic comonoer. The SBR latexes were very monodisperse with the particle size distribution of $1.03{\times}1.12$. Since growth rate is proportional to polymerization time, the difference in conversion rates between various comonomers was resulted from the particle number density of SBR latexes for the various hydrophilic comonomers. It was also found that the colloidal stability of the latexes was excellent because no external emulsifier was incorporated.

  • PDF

Ab Initio Dispersion Polymerization of Styrene in the Presence of the Poly(methacrylic acid) Macro-RAFT Agent

  • Wi, Yeon-Hwa;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.750-756
    • /
    • 2009
  • Stable, spherical, polystyrene particles were synthesized in ab initio dispersion polymerization by using the poly(methacrylic acid)[PMAA] macro-RAFT agent. The presence of the PMAA macro-RAFT agent on the polystyrene (PS) particles was confirmed by NMR and FTIR spectroscopy. The PS particle size was influenced by the concentration of the RAFT agent and monomer due to the initial nucleation. When the concentration of the PMAA macro-RAFT agent was increased from 2 to 10 wt% relative to the monomer, the average particle size decreased from 2.31 to 1.36 ${\mu}m$, the conversion decreased from 93.3 to 88.9%, the weight-average molecular weight increased from 46,300 to 150,200 g $mol^{-1}$ and the PDI decreased from 2.79 to 1.94, respectively. In particular, the incorporation of 10 wt% of PMAA macro-RAFT agent produced monodisperse PS spheres of 1.36 ${\mu}m$ with a coefficient of variation (CV) of 6.44%. Thus, the PMAA macro-RAFT agent worked as a reactive steric stabilizer providing monodisperse, micron-sized, PS particles.

Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects

  • Wagner Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2006
  • Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses $M_{w}$ of $206,000g{\cdot}mol^{-1}$ (PS206k) and $465,000g{\cdot}mol^{-1}$ (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with $M_{w}^{2}$. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the $Pad\'{e}$ approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.

Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization (무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조)

  • Lee, Ki-Chang
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2012
  • Narrowly dispersed poly(BMA-co-MMA) and PBMA latices (PSD : 1.002~1.008) were synthesized successfully by surfactant-free emulsion polymerization with 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA) and $K_2S_2O_8$ (KPS). The number average particle diameter and the number average molecule weight were found to be 160~494 nm and (1.25~7.55) ${\times}10^4$, respectively. The influences of BMA/MMA ratio, monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the polymerization rates and on the particle size and molecular weight were studied. The rate of polymerization increased with increasing MMA concentration in BMA/MMA weight ratio. The particle diameter as well as the polymer molecular weight could be controlled easily by controlling the BMA/MMA weight ratio, monomer concentration, AIBA and KPS concentration, and polymerization temperature.

Preparation of Monodisperse Blue-colored Polymeric Particles with High Zeta-potential (높은 제타전위를 갖는 단분산의 블루착색 고분자미립자의 제조)

  • Lee, Ki-Chang;Nam, Sang-Yong
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • Monodisperse blue-colored poly(styrene-co-acrylic acid) latices were successfully prepared by seeded emulsion polymerization. Blue-colored latices with carboxyl anionic charge on the surface were synthesized at the second stage with the introduction of Blue 606 dye, acrylic acid, and 0.21 ${\mu}m$-polystyrene seed. All the blue-colored latices synthesized in this study were in the size range of 0.25~0.42 ${\mu}m$ and all uniform with less than 1.01 in PSD. The particle size increased with the addition of acrylic acid being delayed and colloidally stable latices were obtained over 30 min after its addition. The blue-colored latex with 20 wt% acrylic acid showed -145 mV of zeta-potential and $-9.4{\times}10^{-6}\;cm^2/Vs$ of electrophoretic mobility, and with 25 wt% of DVB showed high $T_g$ at 396.7 K.

Dispersion polymerization of styrene and Methylmethacrylate using macromonomers as a reactive stabilizer

  • Jung, Hye-Jun;Lee, Kang-Seok;Choe, Soon-Ja
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.86-88
    • /
    • 2006
  • The novel linear- (V-LUM) and cross-type macromonomers (C-VUM) of vinyl-terminated bifunctional polyurethane were synthesized and applied to the dispersion polymerization of styrene and MMA in ethanol. The existence of the vinyl terminal groups and the grafted macromonomer with styrene and PMMA was verified using 1H NMR and 13C NMR. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The macromonomer can efficiently stabilize higher surface area of the particles compared to a conventional stabilizer, PVP. The grafting ratio of the PS calculated from 1H NMR linearly increased up to 0.048 with 20 wt % of the macromonomer and the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal stability were obtained. Furthermore, the stable and monodisperse PMMA microspheres having a weight-average diameter of $5.09{\mu}m$ and a good uniformity of 1.01 were obtained with 20 wt% L-VUM. The molecular weight increased, but the size of the PMMA particles decreased with the macromonomer concentration due to the increased stabilizing effect. The molecular weight of the PMMA was approximately two fold higher than that by a conventional PVP. The L-VUM acts as a reactive stabilizer, which gives polyurethane-grafted PS or PMMA with a high molecular weight. In addition, the XPS result showed that the C-PS (PS using the C-VUM) was anchored with a larger amount of PEG than that of the L-PS (PS using the L-VUM) on the particle surface. Thus, the reaction and stabilizing mechanism of the macromonomers for the formation of PS particles is proposed.

  • PDF

Preparation of Monodisperse Poly(Acrylic acid) with a Water-Soluble Initiator by Solution Polymerization in Aqueous Phase (수용액 내에서 수용성개시제를 이용한 단분산성 폴리아크릴산의 용액중합)

  • Park, Moonsoo;Kim, Yeji
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Solution polymerization was conducted with water-soluble acrylic acid (AA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $60^{\circ}C$ and $90^{\circ}C$ with water as a reaction medium. When the ratio between AA and water was reduced or initiator concentration increased, molecular weights decreased. An increase in the reaction temperature produced lower molecular weights. The polydispersity index was close to 1.5 in most of the reactions. An increase in the stirring speed up to 400 rpm led to a progressive increase in molecular weights. When the stirring speed reached 800 rpm, however, we found that both the number and weight average molecular weights decreased. The glass transition temperature was nearly independent of moelcular weights and determined to be between $113^{\circ}C$ and $116^{\circ}C$.

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Kim, Seul-Gi;Seo, Young-Gon;Cho, Young-Jin;Shin, Jin-Sub;Gil, Seung-Chul;Lee, Won-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1891-1896
    • /
    • 2010
  • Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.

Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).