Browse > Article
http://dx.doi.org/10.17702/jai.2012.13.3.109

Preparation of Monodisperse Blue-colored Polymeric Particles with High Zeta-potential  

Lee, Ki-Chang (Department of Polymer Science and Engineering, School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Nam, Sang-Yong (Department of Polymer Science and Engineering, School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Publication Information
Journal of Adhesion and Interface / v.13, no.3, 2012 , pp. 109-115 More about this Journal
Abstract
Monodisperse blue-colored poly(styrene-co-acrylic acid) latices were successfully prepared by seeded emulsion polymerization. Blue-colored latices with carboxyl anionic charge on the surface were synthesized at the second stage with the introduction of Blue 606 dye, acrylic acid, and 0.21 ${\mu}m$-polystyrene seed. All the blue-colored latices synthesized in this study were in the size range of 0.25~0.42 ${\mu}m$ and all uniform with less than 1.01 in PSD. The particle size increased with the addition of acrylic acid being delayed and colloidally stable latices were obtained over 30 min after its addition. The blue-colored latex with 20 wt% acrylic acid showed -145 mV of zeta-potential and $-9.4{\times}10^{-6}\;cm^2/Vs$ of electrophoretic mobility, and with 25 wt% of DVB showed high $T_g$ at 396.7 K.
Keywords
blue-colored poly(styrene-co-acrylic acid) latices; seeded emulsion polymerization; zeta-potential; electrophoretic mobility; particle size distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Danaka, JP 2005-68381 (2005, 3, 17).
2 D. G. Yu, J. Y. Bae, D. J. Jung, S. Kim, S. D. Ahn, S. Y. Kang, and K. S. Suh, Chem. Mater., 16, 4693 (2004).   DOI
3 D. G. Yu, J. H. An, J. Y. Bae, S. D. Ahn, S. Y. Kang, and K. S. Suh, Macromolecules, 38, 7485 (2005).   DOI
4 C. A. Kim, S. Y. Kang, and K. S. Suh, Telecommunications Review, 13, 986 (2008).
5 J. H. Park, M. A. Lee, B. J. Park, and H. J. Choi, Curr. Appl. Phys., 7, 349 (2007).   DOI
6 X. Guo, A. Weiss, and M. Ballauff, Macromolecules, 32, 6043 (1999).   DOI
7 S. H. Kim, B. J. Kim, D. I. Kwon, and K. H. Park, Polymer (Korea), 28, 524 (2004).
8 J. Ugelstad, P. C. Mark, K. G. Kaggerud, J. Ellingsen, and A. Berge, Adv. Colloid Interface Sci., 13, 101 (1980).   DOI
9 K. C. Lee, M. S. El-Aasser, and J. W. Vanderhoff, J. Appl. Polym. Sci., 42, 3133 (1991).   DOI
10 J. W. Vanderhoff, Future Directions in Polymer Colloids, M. S. Al-Assser and R. M. Fitch Ed., NATO Ser. E 138, p.23, Kluwer Academic Publishers, Netherlands (1987).
11 J. E. Joensson, H. Hassander, and B. Toernell, Macromolecules, 27, 1932 (1994).   DOI
12 Y. Almog, S. Reigh, and M. Levy, Br. Polym. J., 14, 131 (1982).   DOI
13 K. C. Lee and H. A. Wi, J. Polym. Sci. A: Polym. Chem., 46, 6612 (2008).   DOI
14 K. C. Lee and H. A. Wi, J. Appl. Polym. Sci., 115, 297 (2010).   DOI
15 K. Nakamura, Polymer, 4, 309 (1995).
16 Y. N. Xia, Adv. Mater., 13, 369 (2001).   DOI
17 Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater., 12, 693 (2000).   DOI
18 J. G. McGrath, R. D. Bock, J. M. Cathcart, and L. A. Lyon, Chem. Mater., 19, 1584 (2007).   DOI
19 Y. Choi, JP 2006-274250 (2006. 10. 12).
20 Y. Danaka, JP 2005-29766 (2005, 2, 3).