DOI QR코드

DOI QR Code

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Received : 2009.09.14
  • Accepted : 2010.05.04
  • Published : 2010.07.20

Abstract

Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.

Keywords

References

  1. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic Crystals:Molding the Flow of Light; Princeton University Press: Princeton, 1995.
  2. John, S. Phys. Rev. Lett. 1987, 58, 2486. https://doi.org/10.1103/PhysRevLett.58.2486
  3. Noda, S.; Chutinan, A.; Imada, M. Nature 2000, 407, 608. https://doi.org/10.1038/35036532
  4. Shkunov, M. N.; DeLong, M. C.; Raikh, M. E.; Vardeny, Z. V.; Zakhidov, A. A.; Barughman, R. H. Synthetic Matals 2001, 116, 485. https://doi.org/10.1016/S0379-6779(00)00420-3
  5. Braun, P. V.; Rinne, S. A.; Garcia-Santamaria, F. Adv. Mater. 2006, 18, 2665. https://doi.org/10.1002/adma.200600769
  6. Lee, W.; Pruzinsky, S. A.; Braun, P. V. Adv. Mater. 2002, 14, 271. https://doi.org/10.1002/1521-4095(20020219)14:4<271::AID-ADMA271>3.0.CO;2-Y
  7. Pruzinsky, S. A.; Braun, P. V. Adv. Func. Mater. 2005, 15, 1995. https://doi.org/10.1002/adfm.200500345
  8. Lee, K.; Asher, S. A. J. Am. Chem. Soc. 2000, 122, 9534. https://doi.org/10.1021/ja002017n
  9. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563. https://doi.org/10.1002/adma.200304588
  10. Lin, S.-Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. Science 1998, 282, 274. https://doi.org/10.1126/science.282.5387.274
  11. Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Science 2000, 289, 604. https://doi.org/10.1126/science.289.5479.604
  12. Campbell, M.; sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53. https://doi.org/10.1038/35003523
  13. Jeon, S.; Park, J. U.; Cirelli, R.; Yang, S. M.; Heitzman, C. E.; Braun, P. V.; Kenis, P. J. A.; Rogers, J. A. Proc. Natl. Acad. Sci. USA 2004, 101, 12428. https://doi.org/10.1073/pnas.0403048101
  14. Griesebock, B.; Egen, M.; Zentel, R. Chem. Mater. 2002, 14, 4023. https://doi.org/10.1021/cm025613k
  15. Lee, W.; Chan, A.; Bevan, M. A.; Lewis, J. A.; Braun, P. V. Langmuir 2004, 20, 5262. https://doi.org/10.1021/la035694e
  16. van Blaaderen, A.; Ruel, R.; Wiltzius, P. Nature 1997, 385, 321. https://doi.org/10.1038/385321a0
  17. Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 11630. https://doi.org/10.1021/ja9903476
  18. Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L. Adv. Mater. 2001, 13, 389. https://doi.org/10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
  19. Velev, O. D.; Kaler, E. W. Adv. Mater. 2000, 12, 531. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
  20. Vlasov, Y. A.; Bo, X. Z.; Sturm, J. C.; Norris, D. J. Nature 2001, 414, 289. https://doi.org/10.1038/35104529
  21. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater. 2000, 12, 693. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  22. Albota, M.; Beljonne, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653. https://doi.org/10.1126/science.281.5383.1653
  23. Sun, H.-B.; Kawakami, T.; Xu, Y.; Ye, J.-Y.; Matuso, S.; Misawa, H.; Miwa, M.; Kaneko, R. Opt. Lett. 2000, 25, 1110. https://doi.org/10.1364/OL.25.001110
  24. Egen, M.; Zentel, R. Chem. Mater. 2002, 14, 2176. https://doi.org/10.1021/cm010375z
  25. Caruso, F. Colloids and Colloid Assemblies; Synthesis, Modification, Organization and Utilization of Colloid Particles; Wiley-VCH: Weinheim, 2003.
  26. Dong, H.; Lee, S. Y. Macromol. Res. 2009, 17, 397. https://doi.org/10.1007/BF03218880
  27. Goodwin, J. W.; Hearn, J.; Ottewill, R. H. Colloid Polym. Sci. 1974, 252, 464. https://doi.org/10.1007/BF01554752
  28. Odian, G. Principles of Polymerization, 3rd ed.; John Wiley and Sons: New York, 1991.
  29. Checoury, X.; Enoch, S.; Lopez, C.; Blanco, A. Appl. Phys. Lett. 2007, 90, 161131. https://doi.org/10.1063/1.2724916
  30. Lee, W.; Braun, P. V. Mater. Sci. Eng. C 2007, 27, 961. https://doi.org/10.1016/j.msec.2006.06.016
  31. Ma, X.; Lu, J. Q.; Brock, R. S.; Jacobs, K. M.; Yang, P.; Hu, X. Phys. Med. Biology 2003, 48, 4165. https://doi.org/10.1088/0031-9155/48/24/013

Cited by

  1. Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres vol.21, pp.16, 2011, https://doi.org/10.1002/adfm.201002489
  2. Modification of the refractive-index contrast in polymer opal films vol.21, pp.24, 2011, https://doi.org/10.1039/c1jm00063b
  3. Non-aqueous microgel particles: synthesis, properties and applications vol.10, pp.47, 2014, https://doi.org/10.1039/C4SM01834F
  4. Optically pumped distributed feedback dye lasing with slide-coated TiO_2 inverse-opal slab as Bragg reflector vol.39, pp.16, 2014, https://doi.org/10.1364/OL.39.004743
  5. Beads with Nanotextured Surfaces as Photoanodes in Dye-Sensitized Solar Cells vol.7, pp.9, 2014, https://doi.org/10.1002/cssc.201402277
  6. Direct Current Electric Field Assembly of Colloidal Crystals Displaying Reversible Structural Color vol.8, pp.8, 2014, https://doi.org/10.1021/nn502107a
  7. Synthesis, characterization and optical properties of graphene oxide-polystyrene nanocomposites vol.26, pp.3, 2015, https://doi.org/10.1002/pat.3435
  8. Nano- and Submicrometer-Sized Spherical Particle Fabrication Using a Submicroscopic Droplet Formed Using Selective Laser Heating vol.120, pp.4, 2016, https://doi.org/10.1021/acs.jpcc.5b10691
  9. Inverse opal photoelectrode of Nb-doped TiO2 nanoparticles for dye-sensitized solar cell vol.73, pp.9, 2016, https://doi.org/10.1007/s00289-016-1684-5
  10. Tunable Temperature Response of a Thermochromic Photonic Gel Sensor Containing N-Isopropylacrylamide and 4-Acryloyilmorpholine vol.17, pp.6, 2017, https://doi.org/10.3390/s17061398
  11. Flexible polymer opal films prepared by slide coating from alcoholic media vol.25, pp.5, 2017, https://doi.org/10.1007/s13233-017-5061-5
  12. Self-Assembled Colloidal Photonic Crystal on the Fiber Optic Tip as a Sensing Probe vol.9, pp.2, 2017, https://doi.org/10.1109/JPHOT.2017.2689075
  13. Optical properties of CCA films prepared with poly[styrene-co-sodium 1-allyloxy-2-hydroxypropane sulphonate] particles vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001647
  14. Inverse Opal Photonic Gel Containing Charge Stabilized Boronate Anions for Glucose Sensing at Physiological pH pp.18626254, 2018, https://doi.org/10.1002/pssr.201800416
  15. Colorimetric Humidity Sensor Using Inverse Opal Photonic Gel in Hydrophilic Ionic Liquid vol.18, pp.5, 2018, https://doi.org/10.3390/s18051357
  16. 무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조 vol.13, pp.3, 2010, https://doi.org/10.17702/jai.2012.13.3.101
  17. An anion sensing photonic gel by hydrogen bonding of anions to the N-allyl-Nprime-ethyl urea receptor vol.2, pp.16, 2014, https://doi.org/10.1039/c3ta14889k
  18. Part 1 : Styrene과 COPS-I의 무유화공중합 vol.15, pp.3, 2010, https://doi.org/10.17702/jai.2014.15.3.093
  19. Simultaneous Nitrogen Doping and Pore Generation in Thermo-Insulating Graphene Films via Colloidal Templating vol.8, pp.46, 2010, https://doi.org/10.1021/acsami.6b09836
  20. Low-Power All-Organic Electrophoretic Display Using Self-Assembled Charged Poly(t-butyl methacrylate) Microspheres in Isoparaffinic Fluid vol.10, pp.14, 2010, https://doi.org/10.1021/acsami.7b17122
  21. Study of the Synergistic Effect of the Nanoparticle-Surfactant-Polymer System on CO2 Foam Apparent Viscosity and Stability at High Pressure and Temperature vol.34, pp.11, 2020, https://doi.org/10.1021/acs.energyfuels.0c02435
  22. Investigation of Polystyrene-Based Microspheres from Different Copolymers and Their Structural Color Coatings on Wood Surface vol.11, pp.1, 2021, https://doi.org/10.3390/coatings11010014
  23. Fabrication of inverse opal photonic gel sensors on flexible substrates by transfer process vol.21, pp.15, 2010, https://doi.org/10.1039/d1lc00199j
  24. Full‐Color Electrophoretic Display Using Charged Colloidal Arrays of Core-Shell Microspheres with Enhanced Color Tunability in Non‐Polar Medium vol.9, pp.21, 2010, https://doi.org/10.1002/adom.202100833
  25. Microgel Preparation by Miniemulsion Polymerization of Passerini Multicomponent Reaction Derived Acrylate Monomers vol.222, pp.24, 2010, https://doi.org/10.1002/macp.202100328