• 제목/요약/키워드: monocots

검색결과 23건 처리시간 0.023초

Overcoming of Barriers to Transformation in Monocot Plants

  • Toyama Koichi;Bae, Chang-Hyu;Seo, Mi-Suk;Song, In-Ja;Lim, Yong-Pyo;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • 제4권4호
    • /
    • pp.135-141
    • /
    • 2002
  • Agrobacterium-mediated transformation has been unsuccessful for monocot plants except for a few important crops such as barley, rice, maize and wheat. We discussed here that a successful transformation of monocots demands certain critical conditions. The requirements for an efficient transformation are a selection of target tissues competent for plant regeneration and Agrobacterium-infection, and various factors promoting Agrobacterium-infection. The factors were divided into two to activate Agrobacterium and to increase plant cell's susceptibility against Agrobacterium. Optimization of these factors significantly increased transformation efficiency of zoysia grass and rice plants. A technical improvement in transformation system for monocots will promote improvement of the breed as well as a study of gene functions in monocots.

Evo-Devo of Leaf Shape Control with a Special Emphasis on Unifacial Leaves in Monocots

  • Yamaguchi, Takahiro;Tsukaya, Hirokazu
    • 식물분류학회지
    • /
    • 제37권4호
    • /
    • pp.351-361
    • /
    • 2007
  • In angiosperms, leaves typically develop as three-dimensional structure with dorsoventral, longitudinal, and lateral axes. We have shown that the control of two axes of leaves, longitudinal and lateral axis, can be genetically separable, and four classes of genes are responsible for the polar cell expansion and polar cell proliferation in Arabidopsis. In monocots, unifacial leaf, in which leaf surface consists only of abaxial identity, has been evolved in a number of divergent species. The unifacial leaves provide very unique opportunities for the developmental studies of the leaf axes formation in monocots, because their leaf polarities are highly disorganized. In addition, the mechanism of the parallel evolution of such drastic changes in leaf polarities is of interest from an evolutionary viewpoint. In this article, we describe our recent approaches to reveal the mechanism of unifacial leaf development and evolution, including recent advances in the leaf polarity specification in angiosperms.

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • 식물분류학회지
    • /
    • 제48권4호
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

식물에 따른 공변세포의 형태적 특징과 개념화 (Morphological Characteristics and Conceptualization of Guard Cells in Differernt Plants)

  • 이준상;박찬희
    • 한국환경과학회지
    • /
    • 제25권9호
    • /
    • pp.1289-1297
    • /
    • 2016
  • The walls of guard cells have many specialized features. Guard cells are present in the leaves of bryophytes, ferns, and almost all vascular plants. However, they exhibit considerable morphological diversities. There are two types of guard cells: the first type is found in a few monocots, such as palms and corn, and the other is found in most dicots, many monocots, mosses, ferns, and gymnosperms. In corns, guard cells have a characteristic dumbbell shape with bulbous ends. Most dicot and monocot species have kidney-shaped guard cells that have an elliptical contour with a pore at its center. Although subsidiary cells are common in species with kidney-shaped stomata, they are almost always absent in most of the other plants. In this study, there were many different stomatal features that were associated with kidney-shaped guard cells, but not dumbbell shaped guard cells, which are present in most grasses, such as cereals. Each plant investigated exhibited different characteristic features and most of these plants had kidney-shaped guard cells. However, the guard cells of Chamaesyce supina Mold, were often more rectangular than kidney-shaped. In contrast, Sedum sarmentosum guard cells were of the sink ensiform type and in Trifolium repens, the guard cells exhibited a more rhombic shape. Therefore, kidney-shaped guard cells could be divided into a number of subtypes that need to be investigated further.

식물에서 기공 형태에 대한 오해와 진실 (Misconceptions and Truths of Morphological Characteristics in Plant Stomata)

  • 김대재;이준상
    • 생명과학회지
    • /
    • 제27권2호
    • /
    • pp.241-246
    • /
    • 2017
  • 공변세포는 선태류, 양치류 그리고 모든 관다발식물의 잎에서 발견되며, 공변세포벽의 특징은 식물에 따라 매우 다양하고 특수하다. 식물에서 공변세포의 형태적 특징은 단자엽식물과 쌍자엽식물에서 관찰할 수 있는 두 종류로 분류되어 왔다. 일반적으로 단자엽식물은 아령형이고 쌍자엽식물은 콩팥형으로 알고 있다. 그러나 많은 단자엽식물의 공변세포는 콩팥형이다. 벼과에 속하는 옥수수와 벼 그리고 사초과의 공변세포는 아령형이다. 아령형의 공변세포를 보이는 식물은 부세포가 있다. 쌍자엽식물의 공변세포는 대부분 콩팥형이며 부세포가 없는 것이 특징이다. 기공은 공변세포와 부세포로 구성되어 있는 것으로 알고 있으나, 대부분의 쌍자엽식물은 부세포가 없다. 이제까지 단자엽식물은 공변세포 모양이 아령형이며 쌍자엽식물은 콩팥형으로 알고 있으나, 결론적으로 공변세포의 모양은 단자엽식물과 쌍자엽식물에 의해 분류되지 않으며 대부분의 벼과와 사초과를 제외하면 단자엽식물의 공변세포도 콩팥형이다. 돌나물은 공변세포가 가늘고 긴 입술형 그리고 자주달개비의 공변세포는 완벽하게 반달형이다. 따라서 콩팥형의 경우는 식물에 따라 그 모양이 모두 다르다고 할 수 있으며, 아령형의 경우는 그 공변세포의 형태가 비교적 일정하다.

Cloning and Characterization of the psbEF Gene Encoding Cytochrome b-559 of the Panax ginseng Photosystem II Reaction Center

  • Lee, Won-Kyu;Park, Dae-Sung;Tae, Gun-Sik
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.189-195
    • /
    • 1999
  • From the Panax ginseng chloroplast, the psbE and psbF genes, encoding the $\alpha$- and $\beta$-subunits of cytochrome b-559 of the photosystem II reaction center, respectively, were cloned and characterized. The psbE and psbF genes were composed of 252 and 117 nucleotides, respectively. The deduced amino acid sequence of the $\alpha$-subunits showed 95%, 93%, and 91% homology to monocots, dicots, and liverwort, respectively, whereas the $\beta$-subunits showed approximately 98% to 95% homology to the same species. Southern blot analysis revealed that a single copy of the psbEF gene exists in the chloroplast plastid. Northern blot analysis indicated that the psbE and psbF genes are cotranscribed as a polycistron.

  • PDF

Cloning and characterization of the psbA Gene from Panax ginseng(Characterization of the psbA Gene from P. ginseng)

  • Lee, Won-Kyu;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • 제10권3호
    • /
    • pp.245-249
    • /
    • 2003
  • The psbA gene of photo system II was cloned and characterized from the P. ginseng chloroplast. The psbA gene is composed of 1,062 nucleotides. The overall amino acid sequence shows 99% and 98% identities to dicots and monocots of higher plants, respectively. Southern blot analysis revealed that a single copy of the psbA gene existed in the chloroplast genome. Northern blot analysis of the in vivo accumulation of the psbA transcript, after being grown under the different intensities (5%, 10%, 20%, and 100%) of daylight, indicated that the steady-state level of the psbA transcript was not significantly affected by light intensity.

  • PDF

Stress as a Trigger of Pollen Embryogenesis

  • Zarsky, Viktor;Soukupova, Hana
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.411-413
    • /
    • 2000
  • The ability of microspores or young pollen grains (male gametophytes) to undergo developmetal switch to embryogenic (sporophytic) pathway exemplifies the concept of totipotency as applied to haploid posmeiotic cells. As a first step pollen is devoid of positional information provided in situ by the intact anther - by isolation and cultivation in vitro in artificial media. This is inevitably accompanied by some degree of stress response in microspore/pollen. It has been shown in both monocots and dicots that intentional stress treatment (mostly starvation or heat shock) greatly stimulates embryo induction rate. Using transgenic sHSP antisense Nicotiana tabacum we show that expression of small heat shock proteins is an integral part of successful embryo and later haploid plant production from pollen grains. Our recently published data show that sHSP chaperone function is optimal in the absence of ATP.

  • PDF

A Simple and Reliable Method for Preparation of Cross-Contamination-Free Plant Genomic DNA for PCR-Based Detection of Transgenes

  • Hwang, Seon-Kap;Kim, Young-Mi
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.537-540
    • /
    • 2000
  • A simplified but reliable method was developed for the polymerase chain reaction (PCR)-based detection of genetically modified (GM) plants. The modified CTAB (mCTAB) method enabled us to prepare a high quality of genomic DNA from several hundred plant leaf samples in one day. Using DNA samples prepared from seven dicots and two monocots, approximately 1.75-kb regions spanning 17 S to 25 S ribosomal RNA genes were successfully amplified in a 2X PCR pre-mix containing BLOTTO. Further fidelity assessment of the mCTAB method by PCR analysis with Roundup Ready soybean (RRS) and non-RRS plants showed that the DNA samples prepared alternately from each of two lines were evidently free of cross-contamination. These results demonstrate that the mCTAB method is highly recommended for the rapid detection of transgenes in large numbers of leaf samples from diverse transgenic plants.

  • PDF

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • 한국초지조사료학회지
    • /
    • 제20권2호
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF