Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.2.241

Misconceptions and Truths of Morphological Characteristics in Plant Stomata  

Kim, Dae Jae (Department of Biology Education, Chungbuk National University)
Lee, Joon Sang (Department of Biology Education, Chungbuk National University)
Publication Information
Journal of Life Science / v.27, no.2, 2017 , pp. 241-246 More about this Journal
Abstract
The walls of guard cells have many different specialized features. Guard cells are present in leaves of bryophytes, ferns and almost all of the vascular plants. Guard cells show considerable morphological diversities. It is understood that the stomata show two types in terms of morphological characterizations of guard cells. The first type is only found in a few monocots including Poaceae and Cyperaceae. In rice and corn, guard cells have the morphological characteristics of dumbbell shape. The morphological characteristics of dumbbell shape always have subsidiary cells. The other type is found in every dicots and many monocots and they are kidney-shaped guard cells. The plants of kidney-shaped guard cells rarely have subsidiary cells except Commelina communis L. Therefore, it could be concluded that two types of the morphological characteristics of guard cells cannot divide according to monocots or dicots. Every plants in which stomatal characteristic features were all different, most of them belong to kidney-shaped guard cells. However in case of Sedum sarmentosum, guard cells were shown to be long and narrow lips type. In Tradescantia virginiana, the shape of guard cells could be called perfectly to half-moon type. Therefore, it could be concluded that kidney-shaped types are all different in some way, but dumbbell-shaped types are almost constant.
Keywords
Commelina communis L..; guard cells; stomata; subsidiary cells; terminal cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, J. S. and Bowling, D. J. F. 1995. Influence of the mesophyll on stomatal opening. Australian J. Plant Physiol. 22, 357-363.   DOI
2 Lee, J. S., Kwon, Y. M., Koh, S. C., Kim, J. C., Moon, B. Y., Park, M. C., Park, H. B., Park, I. H., Lee, Y. S., Lee, I. H., Lee, J. B., Lee, C. H., Jun, B. O., Cho, S. H. and Hong, J. B. 2003. New plant physiology. 478 pp., Academy Books. Korea.
3 Lee, J. S. and Park. C. H. 2016. Morphological characteristics and conceptualization of guard cells in different plants. J. Environ. Sci. Int. 25, 1051-1056.   DOI
4 Lee, Y. S. 2002. Plant systematics. 575 pp., Usung Co. Korea.
5 Lu, P., Outlaw, W. H., Smith, B. G. and Freed, G. A. 1997. A new mechanism for the regulation of stomatal aperture size in intact leaves. Plant Physiol. 114, 109-118.   DOI
6 Meidner, H. and Mansfield, T. A. 1968. Physiology of stomata. 457 pp., McGgraw Hill Co. U.K.
7 Outlaw, W. 1996. Stomata, pp. 241-259, In N. R. Baker (ed.), Photosynthesis and the environment. Springer Dordreht, Netherland.
8 Park, H. D., Park, J. H., Park, S. J. and Jung, B. G. 2006. Plant systematics. 280 pp., World Sci. Korea.
9 Poffenroth, M., Green, D. B. and Tallman, G. 1992. Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiol. 98, 1460-1471.   DOI
10 Ritte, G., Sakr, S., Rohrig, R. and Raschke, K. 1999. Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. related to the solute requirement for stomatal opening. Plant Physiol. 121, 647-655.   DOI
11 Taiz, L. and Zeiger, E. 2010. Plant physiology. 812 pp., Sinauer Associates Inc. Sunderland, United States.
12 Zeiger, E., Iino, M. M., Shimazaki, K. and Ogawa, T. 1987. The blue light response of stomata, pp. 209-227, In Zeiger, E., Faquhar, G. D., Cowan, I. R. (eds), Stomatal function, Stanford University Press, Stanford, CA.
13 Al-sady, B., Ni, W., Kircher, S., Schafer, E. and Quail, P. H. 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23, 439-446.   DOI
14 Talboll, L. D., Shimayevich, I. J., Chung, Y., Hammad, J. W. and Zeiger, E. 2003. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol. 133, 1522-1529.   DOI
15 Talboll, L. D. and Zeiger, E. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329-337.   DOI
16 Ting, I. P. 1987. Stomata in plants with crassulacean acid metabolism, pp. 353-366, In: Zeiger, E., Faquhar, G.D., Cowan, I.R. (eds), Stomatal function. Stanford University Press, Stanford, CA.
17 Wallace, R. A., Sanders, J. P. and Perl, R. J. 1991. The science of life. 1074 pp., HarperCollinis Publiishers Inc. New York.
18 El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A. J., Wagemaker, C., Weller, J. L. and Koorneef, M. 2003. The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 133, 1504-1516.   DOI
19 Zeiger, E. and Talbott, L. D. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329-337.   DOI
20 Zeiger, E., Talbott, L. D., Frechilla, S., Srivastava, A. and Zhu, J. 2002. The guard cell chloroplast: a perspective for the twenty-first century. New Phyto. 153, 415-424.   DOI
21 Fatemeh, Z. 2006. Density, size and distribution of stomata in different Monocotyledon. Parkistan J. Biol. Sci. 9, 1650-1659.   DOI
22 Hetherington, A. M. and Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. Nature 424, 901-908.   DOI
23 Kim, D. J. and Lee, J. S. 2007. Current theories for mechanism of stomatal opening. J. Plant Biol. 50, 523-526.   DOI
24 Kohl, F. G. 1886. Die Transpiration der Pflanzen und ihre Einwirkung auf die Ausbildung pflanzticher Gewebe. Braunschweig.
25 Kohl, F. G. 1895. Uber Assimilationsenergie und Spaltoffnungsmechanik. Bot. Zbl. 64, 109-110.
26 Lee, G. B. 2016. Plant morphology. 410 pp., Life Science Co. Korea.
27 Lee, J. S. 1992. Influence of the mesophyll on stomatal opening. Ph.D Thesis Aberdeen Univ. U.K.
28 Lee, J. S. 2010. Stomatal opening mechanism of CAM plants. J. Plant Biol. 53, 19-23.   DOI
29 Lee, J. S. 2013. Do really close stomata by soil drying ABA produced in the roots and transported in transpiration stream? Am. J. Plant Sci. 4, 169-173.   DOI
30 Lee, J. S. and Bowling, D. J. F. 1992. Effect of the mesophyll on stomatal opening in Commelina communis. J. Exp. Bot. 43, 951-957.   DOI
31 Lee, J. S. and Bowling, D. J. F. 1993. Influence of the mesophyll on the change of electrical potential difference of guard cells induced by red light and $CO_2$ in Commelina communis L. and Tradescantina virginiana L. Kor. J. Bio. 36, 383-389.