Evo-Devo of Leaf Shape Control with a Special Emphasis on Unifacial Leaves in Monocots

  • Received : 2007.12.04
  • Accepted : 2007.12.06
  • Published : 2007.12.31

Abstract

In angiosperms, leaves typically develop as three-dimensional structure with dorsoventral, longitudinal, and lateral axes. We have shown that the control of two axes of leaves, longitudinal and lateral axis, can be genetically separable, and four classes of genes are responsible for the polar cell expansion and polar cell proliferation in Arabidopsis. In monocots, unifacial leaf, in which leaf surface consists only of abaxial identity, has been evolved in a number of divergent species. The unifacial leaves provide very unique opportunities for the developmental studies of the leaf axes formation in monocots, because their leaf polarities are highly disorganized. In addition, the mechanism of the parallel evolution of such drastic changes in leaf polarities is of interest from an evolutionary viewpoint. In this article, we describe our recent approaches to reveal the mechanism of unifacial leaf development and evolution, including recent advances in the leaf polarity specification in angiosperms.

Keywords

Acknowledgement

Supported by : Creative Scientific Research

References

  1. Allen, E., Z. Xie, A. M. Gustafson and J. C. Carrington. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221 https://doi.org/10.1016/j.cell.2005.04.004
  2. Cutler, D. F. 1969 Anatomy of the monocotyledons. IV. Juncales. Clarendon, Oxford
  3. Eshed, Y., S. F. Baum, J. B. Perea and J. L. Bowman. 2001. Establishment of polarity in lateral organs of plants. Curr. Biol. 11: 1251-1260 https://doi.org/10.1016/S0960-9822(01)00392-X
  4. Eshed, Y., A. Izhaki, S. F. Baum, S. K. Floyd and J. L. Bowman. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131: 2997-3006 https://doi.org/10.1242/dev.01186
  5. Floyd, S. K. and J. L. Bowman. 2004. Gene regulation: ancient microRNA target sequences in plants. Nature 428: 485-486 https://doi.org/10.1038/428485a
  6. Garcia, D., S. A. Collier, M. E. Byrne and R. A. Martienssen. 2006. Specification of leaf polarity in Arabiodpsis via the trans-acting siRNA pathway. Curr. Biol. 16: 933-938 https://doi.org/10.1016/j.cub.2006.03.064
  7. Horiguchi, G., G.-T. Kim and H. Tsukaya. 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 43: 68-78 https://doi.org/10.1111/j.1365-313X.2005.02429.x
  8. Juarez, M. T., J. S. Kui, J. Thomas, B. A. Heller and M. C. P. Timmermans. 2004a. microRNA-mediated repression of rolled lecif1 specifies maize leaf polarity. Nature 428: 84-88 https://doi.org/10.1038/nature02363
  9. Juarez, M. T., R. W. Twigg and M. C. Timmermans. 2004b. Specification of adaxial cell gate during maize leaf development. Development 131: 4533-4544 https://doi.org/10.1242/dev.01328
  10. Kaplan D. R. 1975 Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot. Jahrb. Syst. 95: 1-105
  11. Kerstetter, R. A., K. Bollman, R. A. Taylor, K. Bomblies and R. S. Poethig. 2001. KANADI regulates organ polarity in Arabidopsis. Nature 411: 706-709 https://doi.org/10.1038/35079629
  12. Kim, G.-T., K. Shoda, T. Tsuge, K.-H. Cho, H. Uchimiya, R. Yokoyama, K. Nishitani and H. Tsukaya. 2002. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J. 21: 1267-1279 https://doi.org/10.1093/emboj/21.6.1267
  13. Kim, G.-T., H. Tsukaya and H. Uchimiya. 1998. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 12: 2381-2391 https://doi.org/10.1101/gad.12.15.2381
  14. Nagasaki, H, J.-I. Itoh, K. Hayashi, K.-I. Hibara, N. Satoh-Nagasawa, M. Nosaka, M. Mukouhata, M. Ashikari, H. Kitano, M. Matsuoka, Y. Nagato and Y. Sato. 2007. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc. Natl. Acad. Sci. 104: 14867-71
  15. Narita, N. N., S. Moore, G. Horiguchi, M. Kubo, T. Demura, H. Fukuda, J. Goodrich and H. Tsukaya. 2004. Over-expression of a novel small peptide ROTUNDIFOLIA4 decreases of cell proliferation and alters leaf shape in Arabidopsis. Plant J. 38: 699-713 https://doi.org/10.1111/j.1365-313X.2004.02078.x
  16. Nogueira, F. T. S., S. Madi, D. H. Chitwood, M. T. Juarez and M. C. P. Timmermans. 2007. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes. Dev. 21: 750-755 https://doi.org/10.1101/gad.1528607
  17. McConnell, J. R., J. Emery, Y. Eshed, N. Bao, J. Bowman and M. K. Barton. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713 https://doi.org/10.1038/35079635
  18. Pekker, J., J. P. Alvare and Y. Eshed. 2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17: 2899-2910 https://doi.org/10.1105/tpc.105.034876
  19. Rhoades, M. W., B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel andl D. P. Bartel. 2002. MicroRNAs in plants. Genes Dev. 16: 1616-1626 https://doi.org/10.1101/gad.1004402
  20. Sussex, I. M. 1951. Experiments on the cause of dorsiventrality in leaves. Nature 167: 651-652 https://doi.org/10.1038/167651a0
  21. Sussex, I. M. 1954. Morphologies in Solanum tuberosum L.: experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5: 286-300
  22. Tsuge, T., H. Tsukaya and H. Uchimiya. 1996. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122: 1589-1600
  23. Tsukaya, H. 2002. Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between Cell and Organismal theory. Int. Rev. Cytol. 217: 1-39 https://doi.org/10.1016/S0074-7696(02)17011-2
  24. Tsukaya, H. 2003. Organ shape and size: a lesson from studies of leaf morphogenesis. Curr. Opin. Plant Biol. 6: 57-62 https://doi.org/10.1016/S1369526602000055
  25. Tsukaya, H. 2006. Mechanism of leaf shape determination. Ann. Rev. Plant Biol. 57: 477-496 https://doi.org/10.1146/annurev.arplant.57.032905.105320
  26. Yamaguchi, T. and H. Tsukaya. 2006. ROTUNDIFOLIA4, a plant-specific small peptide involved in the polar cell proliferation of leaves in Arabidopsis thaliana. In Handbook of Biologically Active Peptides. Kastin, A. J. (ed.), Elsevier, San Diego. Pp. 37-40
  27. Yamaguchi, T., N. Nagasawa, S. Kawasaki, M. Matsuoka, Y. Nagato and H.-Y. Hirano. 2004. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16: 500-509 https://doi.org/10.1105/tpc.018044
  28. Waites, R. and A. Hudson. 1995. phantastica: a gene required for dorsoventrality in leaves of Antirrhinum majus. Development 121: 2143-54
  29. Waites, R., H. Selvadurai, I. Oliver and A. Hudson. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789 https://doi.org/10.1016/S0092-8674(00)81439-7