• Title/Summary/Keyword: monitoring model

Search Result 3,497, Processing Time 0.035 seconds

A review of recent research advances on structural health monitoring in Western Australia

  • Li, Jun;Hao, Hong
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • Structural Health Monitoring (SHM) has been attracting numerous research efforts around the world because it targets at monitoring structural conditions and performance to prevent catastrophic failure, and to provide quantitative data for engineers and infrastructure owners to design a reliable and economical asset management strategy. In the past decade, with supports from Australian Research Council (ARC), Cooperative Research Center for Infrastructure and Engineering Asset Management (CIEAM), CSIRO and industry partners, intensive research works have been conducted in the School of Civil, Environmental and Mining Engineering, University of Western Australia and Centre for Infrastructural Monitoring and Protection, Curtin University on various techniques of SHM. The researches include the development of hardware, software and various algorithms, such as various signal processing techniques for operational modal analysis, modal analysis toolbox, non-model based methods for assessing the shear connection in composite bridges and identifying the free spanning and supports conditions of pipelines, vibration based structural damage identification and model updating approaches considering uncertainty and noise effects, structural identification under moving loads, guided wave propagation technique for detecting debonding damage, and relative displacement sensors for SHM in composite and steel truss bridges. This paper aims at summarizing and reviewing the recent research advances on SHM of civil infrastructure in Western Australia.

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.

Performance Analysis of Monitoring Process using the Stochastic Model (추계적 모형을 이용한 모니터링 과정의 성능 분석)

  • 김제숭
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.145-154
    • /
    • 1994
  • In this paper, monitoring processor in a circuit switched network is considered. Monitoring processor monitors communication links, and offers a grade of service in each link to controller. Such an information is useful for an effective maintenance of system. Two links with nonsymmetric system Parameters are considered. each link is assumed independent M/M/1/1 type. The Markov process is introduced to compute busy and idle portions of monitoring processor and monitored rate of each link. Inter-idle times and inter-monitoring times of monitoring processor between two links are respectively computed. A recursive formula is introduced to make computational procedure rigorous.

  • PDF

AN ESTIMATION METHOD OF WORKING AREA WITH RFID TECHNOLOGY

  • Soungho CHAE;Masasi SUZUKI;Yoshinori KAWAHARA;Naruo KANO
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.88-95
    • /
    • 2007
  • In this paper, the authors discussed the overview of a method for estimating working area for development of a monitoring system for labor management using RFID technology. RSSI (Receive Signal Strength Indication) data of RFID tag was obtained from readers set around the indoor space. An estimating model of the working area was prepared. The model had a range of the percentage of correctly classified from 61% to 95%. According to the result, the possibility of the monitoring system and the factors necessary to develop for practical were proposed.

  • PDF

A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV (스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구)

  • Park Juncheol;Roh Taeseong;Choi Dongwhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.248-251
    • /
    • 2005
  • In this paper, health monitoring technique has been studied for performance deterioration caused by the defects of the gas turbine. The parameters for performance diagnostics have been extracted by using GSP program for modeling the target engine. The virtual sensor model for the health monitoring has been built of those data. The position and magnitude of the defects of the engine components have been determined by using Multiple Linear Regression technique and the method using the weight in order to diagnose the single and multiple defects.

  • PDF

Development of Animal Health Monitoring System Model IV. Analysis of Risk Factors in Biochemical Part (동물(젓소)건강 Monitoring System 모델 개발 IV. 혈액 성분의 생화학적 위해요소 분석)

  • 김곤섭;김종수;최민철;라도경;김용환;김충희
    • Journal of Veterinary Clinics
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 2000
  • An animall health monitoring system in Gyeongnam area(near Chinju) was studied to analysis of biochemical risk factors in 617 herds. Clinical serum factors such as glutamate oxaloacetate transaminase(GOT), glutamate pyruvate transaminase(GPT), Ca, P, Mg, glucose, and cholesterol were measured with automatic biochemical analyzer(Ra-X7T Techmmicon, USA). In serum analysis, 613 cattle were within normal llimits(GOT: 9.5-85 IU-dl, GPT: 25-77IU/dl, total protein: 5.8-8.5g/dl, Ca: 4.2-12.4mg/dl, P: 4.6-9.7mg/dl, Mg: 1.5-3.0mg/dl, glucose: 48-120mg/dl, Cholesterol: 70-170mg/dl), the other cattle showed high glucose and high cholesterol level. It is proposed that clinical serum factors to be estimated may be valuable for developing of animal health monitoring system model.

  • PDF

A Study on Development of the System Model based on u-IT for Landslide Monitoring (급경사지 붕괴 감시를 위한 u-IT 관제 시스템 모델 개발에 관한 연구)

  • Cheon, D.J.;Kim, J.S.;Lee, B.S.;Jung, D.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.619-620
    • /
    • 2012
  • This paper proposes a model of the real time monitoring system based on Ubiquitous Sensor Network (USN) for the detection and prediction of landslides. For this purpose, the real time monitoring system with tilting sensor and USN was set up and the performance was conducted. The performance was accomplished by conducting both field examinations and the experimental evaluation of the monitoring system. The results of this study show that the movements detected by the sensor module coincide with the actual displacement of field and the data measured from the sensor modules through USN transfer to the monitoring system without errors.

  • PDF

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

A Quantitative Performance Index for Discrete-time Observer-based Monitoring Systems (이산관측기에 근거한 감지시스템을 위한 정량적 성능지표)

  • Huh, Kun-Soo;Kim, Sang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.138-148
    • /
    • 1995
  • While Model-based Monitoring systems based on state observer theory have shown much promise in the laboratory, they have not been widely accepted by industry because, inpractice, these systems often have poor performance with respect to accuracy, band-width, reliability(false alarms), and robustness. In this paper, the linitations of the deterministic discrete-time state observer are investigated quantitatively from the machine monitoring viewpoint. The limitations in the transient and steady-state observer performance are quantified as estimation error bounds from which performance indices are selected. Each index represents the conditioning of the corresponding performance. By utilizing matrix norm theory, an unified main index is determined, that dominates all the indices. This index could from the basis for an observer design methodology that should improve the performance of model-based monitoring systems.

  • PDF

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.