• Title/Summary/Keyword: monic ideal

Search Result 7, Processing Time 0.025 seconds

On Partitioning Ideals of Semirings

  • Gupta, Vishnu;Chaudhari, Jayprakash Ninu
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.181-184
    • /
    • 2006
  • We prove the following results: (1) Let R be a strongly euclidean semiring. Then an ideal A of $R_{n{\times}n}$ is a partitioning ideal if and only if it is a subtractive ideal. (2) A monic ideal M of R[$x$], where R is a strongly euclidean semiring, is a partitioning ideal if and only if it is a subtractive ideal.

  • PDF

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.

ON THE PARITY OF THE CLASS NUMBER OF SOME REAL BIQUADRATIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.169-176
    • /
    • 2010
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. In this paper, we obtain the the criterion for the parity of the ideal class number h(${\mathcal{O}}_K$) of the real biquadratic function field $K=k(\sqrt{P_1},\;\sqrt{P_2})$, where $P_1$, $P_2{\in}{\mathbb{A}}$ be two distinct monic primes of even degree.

ALGEBRAS WITH A NILPOTENT GENERATOR OVER ℤp2

  • Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.487-497
    • /
    • 2006
  • The purpose of this paper is to describe the structure of the rings $\mathbb{Z}_{p^2}[X]/({\alpha}(X))$ with ${\alpha}(X)$ a monic polynomial and $\={X}^{\kappa}=0$ for some nonnegative integer ${\kappa}$. Especially we will see that any ideal of such rings can be generated by at most two elements of the special form and we will find the 'minimal' set of generators of the ideals. We indicate how to identify the isomorphism types of the ideals as $\mathbb{Z}_{p^2}-modules$ by finding the isomorphism types of the ideals of some particular ring. Also we will find the annihilators of the ideals by finding the most 'economical' way of annihilating the generators of the ideal.

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS

  • Xiang, Yueming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.611-622
    • /
    • 2010
  • A ring R is called left max-coherent provided that every maximal left ideal is finitely presented. $\mathfrak{M}\mathfrak{I}$ (resp. $\mathfrak{M}\mathfrak{F}$) denotes the class of all max-injective left R-modules (resp. all max-flat right R-modules). We prove, in this article, that over a left max-coherent ring every right R-module has an $\mathfrak{M}\mathfrak{F}$-preenvelope, and every left R-module has an $\mathfrak{M}\mathfrak{I}$-cover. Furthermore, it is shown that a ring R is left max-injective if and only if any left R-module has an epic $\mathfrak{M}\mathfrak{I}$-cover if and only if any right R-module has a monic $\mathfrak{M}\mathfrak{F}$-preenvelope. We also give several equivalent characterizations of MI-injectivity and MI-flatness. Finally, $\mathfrak{M}\mathfrak{I}$-dimensions of modules and rings are studied in terms of max-injective modules with the left derived functors of Hom.