ON THE PARITY OF THE CLASS NUMBER OF SOME REAL BIQUADRATIC FUNCTION FIELD

JaEhyun Ahn* and Hwanyup Jung**

Abstract

Let $k=\mathbb{F}_{q}(T)$ and $\mathbb{A}=\mathbb{F}_{q}[T]$. In this paper, we obtain the the criterion for the parity of the ideal class number $h\left(\mathcal{O}_{K}\right)$ of the real biquadratic function field $K=k\left(\sqrt{P_{1}}, \sqrt{P_{2}}\right)$, where $P_{1}, P_{2} \in \mathbb{A}$ be two distinct monic primes of even degree.

1. Introduction and statement of main result

In the paper [2], Kucera has determined the parity of the class number of any real biquadratic field $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ in terms of quadratic residue symbols, where p and q are different primes with $p \equiv q \equiv 1 \bmod 4$. In this paper we give a similar result for some real biquadratic function fields.

Let $k=\mathbb{F}_{q}(T)$ and $\mathbb{A}=\mathbb{F}_{q}[T]$. Assume that q is odd. Let $P \in$ \mathbb{A} be a monic prime of even degree. Let $\mathbb{M}_{P}:=\{A \in \mathbb{A}: \operatorname{deg} A<$ $\operatorname{deg} P$ and $\operatorname{gcd}(P, A)=1\}$ and $\mathbb{M}_{P}^{+}:=\left\{A \in \mathbb{M}_{P}: A\right.$ is monic $\}$. Then we have ([4, Lemma 16.13]) that

$$
P=\prod_{A \in \mathbb{M}_{P}} \lambda_{P}^{A}=\left(\prod_{A \in \mathbb{M}_{P}^{+}} \lambda_{P}^{A}\right)^{q-1}
$$

where λ_{P} is a primitive P-torsion point of the Carlitz module. We set

$$
\sqrt{P}:=(-1)^{\frac{q^{\operatorname{deg} P}-1}{2(q-1)}}\left(\prod_{A \in \mathbb{M}_{P}^{+}} \lambda_{P}^{A}\right)^{\frac{q-1}{2}}
$$

Received January 26, 2009; Accepted February 22, 2010.
2000 Mathematics Subject Classification: Primary 11R58, 11R29, 11R27.
Key words and phrases: circular units, class number, bicyclic function field.
Correspondence should be addressed to Hwanyup Jung, hyjung@chungbuk.ac.kr.
**This work was supported by the research grant of the Chungbuk National University in 2009 .

Then $k(\sqrt{P})$ is the unique real quadratic subfield of K_{P}^{+}, where K_{P}^{+}is the maximal real subfield of the P-th cyclotomic function field K_{P}.

Now let $P_{1}, P_{2} \in \mathbb{A}$ be two distinct monic primes of even degree. We let $K:=k\left(\sqrt{P_{1}}, \sqrt{P_{2}}\right)$ and $F:=k\left(\sqrt{P_{1} P_{2}}\right)$. Fix a primitive root $Q_{i} \in \mathbb{M}_{P_{i}}$ of P_{i} for $i=1,2$. For $P_{i} \nmid A$, let $\delta_{i}(A)$ be the index of A relative to Q_{i}. We set

$$
\begin{aligned}
& \mathcal{M}_{i}:=\left\{A \in \mathbb{M}_{P_{i}}: 0 \leq \delta_{i}(A)<\left(q^{\operatorname{deg} P_{i}}-1\right) /(q-1)\right\} \\
& \mathcal{M}_{i}^{+}:=\left\{A \in \mathcal{M}_{i}:\left(A / P_{i}\right)=1\right\}, \quad \mathcal{M}_{i}^{-}:=\left\{A \in \mathcal{M}_{i}:\left(A / P_{i}\right)=-1\right\}
\end{aligned}
$$

for $i=1,2$. Then $\mathbb{M}_{P_{i}}$ is the disjoint union of the $c \mathcal{M}_{i}$, where $c \in \mathbb{F}_{q}^{*}$. Let \mathcal{X} be the set of all $A \in \mathbb{M}_{P_{1} P_{2}}$ such that $\left(A / P_{2}\right)=1$ and $A \equiv \tilde{A} \bmod P_{1}$ for some $\tilde{A} \in \mathcal{M}_{1}^{+}$. We define

$$
\beta:=\prod_{A \in \mathcal{X}} \lambda_{P_{1} P_{2}}^{A}
$$

Let \mathcal{O}_{K} and \mathcal{O}_{F} be the integral closure of \mathbb{A} in K and F, respectively. Denote by $h\left(\mathcal{O}_{K}\right)$ and $h\left(\mathcal{O}_{F}\right)$ the class numbers of \mathcal{O}_{K} and \mathcal{O}_{F}, respectively. We also let σ_{i} be the generator of $\operatorname{Gal}\left(K / k\left(\sqrt{P_{i}}\right)\right.$ for $i=1,2$. Then the main result of this paper is

Theorem 1.1. Let $P_{1}, P_{2} \in \mathbb{A}$ be two distinct monic primes of even degree and $K=k\left(\sqrt{P_{1}}, \sqrt{P_{2}}\right), F=k\left(\sqrt{P_{1} P_{2}}\right)$. Let μ_{F} be a fundamental unit of F.
(I) If $\left(P_{2} / P_{1}\right)=-1$, then $h\left(\mathcal{O}_{K}\right)$ is odd and $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ with $N_{F / k}\left(\mu_{F}\right) \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$.
(II) When $\left(P_{2} / P_{1}\right)=1$, fix $U, V \in \mathbb{A}$ satisfying $U^{2} \equiv P_{1} \bmod P_{2}$ and $V^{2} \equiv P_{2} \bmod P_{1}$.
(i) If $\left(U / P_{2}\right) \neq\left(V / P_{1}\right)$, then $h\left(\mathcal{O}_{K}\right)$ is odd and $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ with $N_{F / k}\left(\mu_{F}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{2}$.
(ii) Assume that $\left(U / P_{2}\right)=\left(V / P_{1}\right)=-1$.

- If $\beta^{1+\sigma_{1}}=\beta^{1+\sigma_{2}}$, then $h\left(\mathcal{O}_{K}\right)$ is even and $h\left(\mathcal{O}_{F}\right) \equiv 4 \bmod 8$ with $N_{F / k}\left(\mu_{F}\right) \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$.
- If $\beta^{1+\sigma_{1}} \neq \beta^{1+\sigma_{2}}$, then $h\left(\mathcal{O}_{K}\right)$ is odd and $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ with $N_{F / k}\left(\mu_{F}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{2}$.
(iii) Assume that $\left(U / P_{2}\right)=\left(V / P_{1}\right)=1$.
- If $\beta^{1+\sigma_{1}}=\beta^{1+\sigma_{2}}$, then $h\left(\mathcal{O}_{K}\right)$ is even and $4 \mid h\left(\mathcal{O}_{F}\right)$ (resp. $8 \mid h\left(\mathcal{O}_{F}\right)$ whenever $\left.N_{F / k}\left(\mu_{F}\right) \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}\right)$.
- If $\beta^{1+\sigma_{1}} \neq \beta^{1+\sigma_{2}}$, then $h\left(\mathcal{O}_{K}\right)$ is odd and $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ with $N_{F / k}\left(\mu_{F}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{2}$.

2. Cyclotomic units

Fix two distinct primes $P_{1}, P_{2} \in \mathbb{A}^{+}$of even degree. We let $K:=$ $k\left(\sqrt{P_{1}}, \sqrt{P_{2}}\right), F:=k\left(\sqrt{P_{1} P_{2}}\right)$ and $K_{i}:=k\left(\sqrt{P_{i}}\right)$ for $i=1,2$. We also let

$$
\varepsilon:=N_{K_{P_{1} P_{2}} / K}\left(\lambda_{P_{1} P_{2}}\right) \in \mathcal{O}_{K}^{*}, \quad \varepsilon_{i}:=\frac{1}{\sqrt{P_{i}}} N_{K_{P_{i}} / K_{i}}\left(\lambda_{P_{i}}\right) \in \mathcal{O}_{K_{i}}^{*}
$$

For any $A \in \mathbb{A}$ with $\operatorname{gcd}\left(A, P_{i}\right)=1$, let $\operatorname{sgn}_{P_{i}}(A)$ be the leading coefficient of \bar{A}, where \bar{A} is the unique element of $\mathbb{M}_{P_{i}}$ such that $A \equiv \bar{A} \bmod$ P_{i}. Let \mathcal{R}_{i} be any complete set of representatives of $\left(\mathbb{A} / P_{i} \mathbb{A}\right)^{*} / \mathbb{F}_{q}^{*}$. Define

$$
\beta_{i}:=\prod_{A \in \mathcal{R}_{i}}\left(\frac{\lambda_{P_{i}}^{A}}{\operatorname{sgn}_{P_{i}}(A) \lambda_{P_{i}}}\right)^{\left(A / P_{i}\right)}
$$

where $\left(A / P_{i}\right)$ denotes the Legendre symbol. It is shown in [4, Lemma 16.14] that β_{i} is independent of the choice of \mathcal{R}_{i} and $\beta_{i} \in \mathcal{O}_{K_{i}}^{*}$. Moreover, we have

Lemma 2.1. $\beta_{i}^{\frac{q-1}{2}}=\varepsilon_{i}$.
Proof. It follows from that

$$
\beta_{i}=\prod_{\substack{A \in \mathbb{M}_{P_{i}}^{+} \\\left(A / P_{i}\right)=1}} \frac{\lambda_{P_{i}}^{A}}{\lambda_{P_{i}}} \prod_{\substack{A \in \mathbb{M}_{P_{i}}^{+} \\\left(A / P_{i}\right)=-1}} \frac{\lambda_{P_{i}}}{\lambda_{P_{i}}^{A}}=\frac{\left(\prod_{A \in \mathbb{M}_{P_{i}}^{+},\left(A / P_{i}\right)=1} \lambda_{P_{i}}^{A}\right)^{2}}{\prod_{A \in \mathbb{M}_{P_{i}}^{+}} \lambda_{P_{i}}^{A}}
$$

by taking $\mathcal{R}_{i}=\mathbb{M}_{P_{i}}^{+}$.
Lemma 2.2. $\varepsilon=\beta^{q-1}$ with $\beta \in \mathcal{O}_{K}^{*}$.
Proof. At first, we note that $\left(c / P_{1}\right)=\left(c / P_{2}\right)=1$ for any $c \in \mathbb{F}_{q}^{*}$. Let \mathcal{Y} be the set of all $A \in \mathbb{M}_{P_{1} P_{2}}$ such that $\left(A / P_{1}\right)=\left(A / P_{2}\right)=1$. Then \mathcal{Y} is the disjoint union of the $c \mathcal{X}$, where $c \in \mathbb{F}_{q}^{*}$, and $|\mathcal{X}|$ is a multiple of $q-1$. Thus we have

$$
\varepsilon=\prod_{A \in \mathcal{Y}} \lambda_{P_{1} P_{2}}^{A}=\prod_{A \in \mathcal{X}} \prod_{c \in \mathbb{F}_{q}^{*}} \lambda_{P_{1} P_{2}}^{c A}=(-1)^{|\mathcal{X}|}\left(\prod_{A \in \mathcal{X}} \lambda_{P_{1} P_{2}}^{A}\right)^{q-1}=\beta^{q-1}
$$

It remains to show that $\beta \in K^{*}$. For any $A \in \mathcal{Y}$, let $c(A)$ be the unique element of \mathbb{F}_{q}^{*} such that $c(A) A \in \mathcal{X}$. For any $A \in \mathbb{A}$ with $\operatorname{gcd}\left(A, P_{1} P_{2}\right)=$ 1 , let \bar{A} be the unique element of $\mathbb{M}_{P_{1} P_{2}}$ such that $A \equiv \bar{A} \bmod P_{1} P_{2}$.

For any $B \in \mathbb{M}_{P_{1} P_{2}}$, we have $\{c(\overline{A B}) \overline{A B}: A \in \mathcal{X}\}=\mathcal{X}$. Thus, for any $B \in \mathcal{Y}$, we have

$$
\beta^{\sigma_{B}}=\prod_{A \in \mathcal{X}} \lambda_{P_{1} P_{2}}^{A B}=\prod_{A \in \mathcal{X}} c(\overline{A B})^{-1} \lambda_{P_{1} P_{2}}^{c(\overline{A B}) \overline{A B}}=\beta \prod_{A \in \mathcal{X}} c(\overline{A B})^{-1} .
$$

For any $C \in \mathcal{M}_{1}^{+}$, we have $\left|\left\{A \in \mathcal{X}: A \equiv C \bmod P_{1}\right\}\right|=\left(q^{\operatorname{deg} P_{2}}-1\right) / 2$. Thus

$$
\begin{aligned}
\prod_{A \in \mathcal{X}} c(\overline{A B})^{-1} & =\prod_{C \in \mathcal{M}_{1}^{+}} \prod_{\substack{A \in \mathcal{X} \\
A \bmod P_{1}}} c(\overline{A B})^{-1} \\
& =\prod_{C \in \mathcal{M}_{1}^{+}}\left(c(\overline{C B})^{-1}\right)^{\frac{q^{\operatorname{deg}} P_{2}-1}{2}}=1 .
\end{aligned}
$$

Therefore $\beta \in K^{*}$.
Let $c_{i} \in \mathbb{F}_{q}^{*}$ be the unique element such that $Q_{i}^{\frac{q^{\operatorname{deg}} P_{i-1}}{q-1}} \equiv c_{i} \bmod P_{i}$. We also let σ_{i} be the generator of $\operatorname{Gal}\left(K / K_{i}\right)$.

Lemma 2.3.

$$
\beta^{1+\sigma_{1}}= \begin{cases}\frac{\delta_{1}\left(P_{2}\right)}{2} & \text { if }\left(P_{2} / P_{1}\right)=1 \\ c_{1}^{\frac{\delta_{1}\left(P_{2}\right)+1}{2}}\left(\frac{\Pi_{A \in \mathcal{M}_{1}^{+}} \operatorname{sgn}_{P_{1}}(A)}{\prod_{A \in \mathcal{M}_{1}^{-}} \operatorname{sgn}_{P_{1}}(A)}\right) \beta_{1} & \text { if }\left(P_{2} / P_{1}\right)=-1 .\end{cases}
$$

Proof. Choose $A^{\prime} \in \mathbb{M}_{P_{1} P_{2}}$ such that $A^{\prime} \equiv 1 \bmod P_{1}$ and $\left(A^{\prime} / P_{2}\right)=$ -1 . Then $\left.\sigma_{A^{\prime}}\right|_{K}=\sigma_{1}$, where $\sigma_{A^{\prime}} \in \operatorname{Gal}\left(K_{P_{1} P_{2}} / k\right)$. Thus we have

$$
\beta^{1+\sigma_{1}}=\prod_{B \in \mathcal{M}_{1}^{+}}\left(\lambda_{P_{1}}^{B}\right)^{1-\text { Frob }^{-1}\left(P_{2}, K_{P_{1}}\right)}=\frac{\prod_{B \in \mathcal{M}_{1}^{+}} \lambda_{P_{1}}^{B}}{\prod_{B \in \mathcal{M}_{1}^{+}} \lambda_{P_{1}}^{B D}},
$$

where $D \in \mathbb{A}$ with $D P_{2} \equiv 1 \bmod P_{1}$. We only prove the case that $\left(P_{1} / P_{2}\right)=-1$. In this case, we have $\left(D / P_{1}\right)=-1$, and so $\delta_{1}(D)$ is odd. Write $\frac{\delta_{1}(D)-1}{2}=n_{1}+\frac{\left(q^{d_{1}}-1\right)}{2(q-1)} n_{2}$ with $0 \leq n_{1}<\frac{\left(q^{d_{1}}-1\right)}{2(q-1)}$ and $0 \leq n_{2}<q-1$. Then

$$
\prod_{B \in \mathcal{M}_{1}^{+}} \lambda_{P_{1}}^{B D}=c_{1}^{\frac{\delta_{1}(D)-1}{2}} \prod_{0 \leq j<\frac{q^{d_{1}-1}}{2(q-1)}} \lambda_{P_{1}}^{Q_{1}^{2 j+1}}=c_{1}^{\frac{\delta_{1}(D)-1}{2}} \prod_{B \in \mathcal{M}_{1}^{-}} \lambda_{P_{1}}^{B} .
$$

Thus, by taking $\mathcal{R}_{1}=\mathcal{M}_{1}$ in definition of β_{1}, we have

$$
\beta^{1+\sigma_{1}}=c_{1}^{\frac{\delta_{1}\left(P_{2}\right)+1}{2}}\left(\frac{\prod_{A \in \mathcal{M}_{1}^{+}} \operatorname{sgn} n_{P_{1}}(A)}{\prod_{A \in \mathcal{M}_{1}^{-}} \operatorname{sgn} n_{P_{1}}(A)}\right) \beta_{1} .
$$

This completes the proof.
Corollary 2.4.

$$
\beta^{1+\sigma_{2}}= \begin{cases}c_{0}^{-2} c_{2}^{\frac{\delta_{2}\left(P_{1}\right)}{2}} & \text { if }\left(P_{2} / P_{1}\right)=1, \\ c_{0}^{-2} c_{2}^{\frac{\delta_{2}\left(P_{1}\right)+1}{2}}\left(\frac{\Pi_{A \in \mathcal{M}_{2}^{+}} \operatorname{sgn}_{P_{2}}(A)}{\prod_{A \in \mathcal{M}_{2}^{-}} \operatorname{sgn}_{P_{2}}(A)}\right) \beta_{2} & \text { if }\left(P_{2} / P_{1}\right)=-1 .\end{cases}
$$

Lemma 2.5. For any $B \in \mathbb{A}$ with $P_{i} \nmid B$, we have

$$
\prod_{A \in \mathcal{M}_{i}}\left(\frac{\operatorname{sgn}_{P_{i}}(A B)}{\operatorname{sgn}_{P_{i}}(A) \operatorname{sgn}_{P_{i}}(B)}\right)^{\left(A / P_{i}\right)}= \begin{cases}1 & \text { if }\left(B / P_{i}\right)=1 \\ \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2} & \text { if }\left(B / P_{i}\right)=-1\end{cases}
$$

Proof. We only prove the case that $\left(B / P_{i}\right)=-1$. We may assume that $B \in \mathcal{M}_{i}^{-}$, so that $B \equiv Q_{i}^{2 n+1} \bmod P_{i}$ for some $0 \leq n<$ $\left(q^{\operatorname{deg} P_{i}}-1\right) / 2(q-1)$. Then we have

$$
\begin{aligned}
\prod_{A \in \mathcal{M}_{i}}(& \left.\frac{\operatorname{sgn}_{P_{i}}(A B)}{\operatorname{sgn}_{P_{i}}(A) \operatorname{sgn} n_{P_{i}}(B)}\right)^{\left(A / P_{i}\right)} \\
& =c_{i}^{n} \frac{\prod_{A \in \mathcal{M}_{i}^{-}} \operatorname{sgn}_{P_{i}}(A)}{\prod_{A \in \mathcal{M}_{i}^{+}} \operatorname{sgn}_{P_{i}}(A)} \cdot c_{i}^{-n-1} \frac{\prod_{A \in \mathcal{M}_{i}^{-}} \operatorname{sgn}_{P_{i}}(A)}{\prod_{A \in \mathcal{M}_{i}^{+}} \operatorname{sgn} n_{P_{i}}(A)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \prod_{A \in \mathcal{M}_{i}}\left(\frac{\operatorname{sgn}_{P_{i}}(A B)}{\operatorname{sgn}_{P_{i}}(A) \operatorname{sgn}_{P_{i}}(B)}\right)^{\left(A / P_{i}\right)} \\
& \quad=c_{i}^{-1}\left(\frac{\prod_{A \in \mathcal{M}_{i}^{-}} \operatorname{sgn}_{P_{i}}(A)}{\prod_{A \in \mathcal{M}_{i}^{+}} \operatorname{sgn}_{P_{i}}(A)}\right)^{2} \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2} .
\end{aligned}
$$

3. Proof of Theorem 1.1

Let \mathcal{C}_{K}^{\prime} be the subgroup of \mathcal{O}_{K}^{*} generated by \mathbb{F}_{q}^{*} and $\left\{\beta, \beta_{1}, \beta_{2}\right\}$. Then, by Lemma 2.1 and 2.2 , we have $\left[\mathcal{O}_{K}^{*}: \mathcal{C}_{K}^{\prime}\right]=h\left(\mathcal{O}_{K}\right)$. Similarly the subgroup \mathcal{C}_{F}^{\prime} of \mathcal{O}_{F}^{*} generated by \mathbb{F}_{q}^{*} and $N_{K / F}(\beta)=\beta^{1+\sigma_{1} \sigma_{2}}$ has index $\left[\mathcal{O}_{F}^{*}: C_{F}^{\prime}\right]=\frac{1}{2} h\left(\mathcal{O}_{F}\right)$ by Lemma 2.2. Thus $h\left(\mathcal{O}_{F}\right)$ is always even.

Lemma 3.1. $\left(c \beta_{1}\right)^{1+\sigma_{2}}$ and $\left(c \beta_{2}\right)^{1+\sigma_{1}}$ are contained in $\mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$ for any $c \in \mathbb{F}_{q}^{*}$.

Proof. We only prove that $\left(c \beta_{1}\right)^{1+\sigma_{2}} \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$ for any $c \in \mathbb{F}_{q}^{*}$. Choose $B \in \mathbb{M}_{P_{1} P_{2}}$ such that $\left(B / P_{1}\right)=-1$ and $\left(B / P_{2}\right)=1$. Then $\left.\sigma_{B}\right|_{K}=\sigma_{2}$, where $\sigma_{B} \in \operatorname{Gal}\left(K_{P_{1} P_{2}} / k\right)$. By taking $\mathcal{R}_{1}=\mathcal{M}_{1}$, we have

$$
\beta_{1}^{\sigma_{2}}=\beta_{1}^{-1} \prod_{A \in \mathcal{M}_{1}}\left(\frac{\operatorname{sgn}_{P_{1}}(A B)}{\operatorname{sgn}_{P_{1}}(A) \operatorname{sgn} n_{P_{1}}(B)}\right)^{\left(A / P_{1}\right)} .
$$

Thus, by Lemma 2.5, $\beta_{1}^{1+\sigma_{2}} \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$. Therefore $\left(c \beta_{1}\right)^{1+\sigma_{2}} \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$ for any $c \in \mathbb{F}_{q}^{*}$.

Corollary 3.2. None of $c \beta_{1}, c \beta_{2}$ and $c \beta_{1} \beta_{2}$ is a square in K for any $c \in \mathbb{F}_{q}^{*}$.

Proof. By Lemma 3.1, $c \beta_{1}$ and $c \beta_{2}$ are not square in K for any $c \in \mathbb{F}_{q}^{*}$. Since $\left(c \beta_{1} \beta_{2}\right)^{1+\sigma_{1}}=c^{2} \beta_{1}^{2} \beta_{2}^{1+\sigma_{1}}$ and $\left(c \beta_{1} \beta_{2}\right)^{1+\sigma_{2}}=c^{2} \beta_{2}^{2} \beta_{1}^{1+\sigma_{2}}, c \beta_{1} \beta_{2}$ is not a square in K.

Lemma 3.3. $h\left(\mathcal{O}_{K}\right)$ is even if and only if $\delta=c \beta \beta_{1}^{x} \beta_{2}^{y}$ is a square in K for some $x, y \in\{0,1\}$ and $c \in \mathbb{F}_{q}^{*}$.

Proof. It is an immediate consequence of Lemma 3.1, Corollary 3.2 and the fact that $h\left(\mathcal{O}_{K}\right)=\left[\mathcal{O}_{K}^{*}: \mathcal{C}_{K}^{\prime}\right]$.

Set $G_{K}:=\operatorname{Gal}(K / k)$ for simplicity. A function $f: G_{K} \rightarrow K$ is called a crossed homomorphism if $f(\sigma \tau)=f(\sigma) f(\tau)^{\sigma}$ for any $\sigma, \tau \in G_{K}$. The following Lemma is taken from [3, Proposition 2].

Lemma 3.4. Let $\mu \in \mathcal{O}_{K}^{*}$ be such that there exists a function f : $G_{K} \rightarrow K$ satisfying $\mu^{1-\sigma}=f(\sigma)^{2}$ for any $\sigma \in G_{K}$. If there is a function $g: G_{K} \rightarrow\{ \pm 1\}$ such that $f g$ is a crossed homomorphism, then $c \mu$ is a square in K for some $c \in \mathbb{F}_{q}^{*}$.

Now we give the proof of Theorem 1.1. At first, let us consider the case that $\left(P_{1} / P_{2}\right)=-1$. By Lemma 2.3 and Corollary 2.4, we have

$$
\beta^{1+\sigma_{1} \sigma_{2}}=\left(\beta^{1+\sigma_{1}}\right)^{\sigma_{2}}\left(\beta^{1+\sigma_{2}}\right)^{-1} \beta^{2}=c \beta_{1}^{\sigma_{2}} \beta_{2}^{-1} \beta^{2}
$$

for some $c \in \mathbb{F}_{q}^{*}$. Thus $\left(\beta^{1+\sigma_{1} \sigma_{2}}\right)^{1+\sigma_{1}} \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$, and so $c \beta^{1+\sigma_{1} \sigma_{2}}$ is not a square in F for any $c \in \mathbb{F}_{q}^{*}$. Hence $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ and $N_{F / k}\left(\mu_{F}\right) \in$ $\mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2}$. Consider $\delta=c \beta \beta_{1}^{x} \beta_{2}^{y}$ with $c \in \mathbb{F}_{q}^{*}$ and $x, y \in\{0,1\}$. Then, by Lemma 2.3, we have

$$
\delta^{1-\sigma_{2}}=\beta^{1-\sigma_{2}} \beta_{1}^{x\left(1-\sigma_{2}\right)}=\beta^{2}\left(\beta^{1+\sigma_{2}}\right)^{-1} \beta_{1}^{2 x}\left(\beta_{1}^{1+\sigma_{2}}\right)^{-x}=c \beta_{1}^{-1}\left(\beta \beta_{1}^{x}\right)^{2}
$$

for some $c \in \mathbb{F}_{q}^{*}$. Thus, by Corollary 3.2, $\delta^{1-\sigma_{2}}$ is not a square in K and so is δ. Hence, by Lemma 3.3, $h\left(\mathcal{O}_{K}\right)$ is odd.

Now let us suppose that $\left(P_{1} / P_{2}\right)=1$. Fix $U, V \in \mathbb{A}$ such that $U^{2} \equiv P_{1} \bmod P_{2}$ and $V^{2} \equiv P_{2} \bmod P_{1} . \quad$ Clearly $\left(V / P_{1}\right)=(-1)^{\frac{\delta_{1}\left(P_{2}\right)}{2}}$ and $\left(U / P_{2}\right)=(-1)^{\frac{\delta_{2}\left(P_{1}\right)}{2}}$. By Lemma 2.3 and Corollary 2.4, we have

$$
\beta^{1+\sigma_{1}}=c_{1}^{\frac{\delta_{1}\left(P_{2}\right)}{2}} \in \begin{cases}\left(\mathbb{F}_{q}^{*}\right)^{2} & \text { if }\left(V / P_{1}\right)=1 \tag{3.1}\\ \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2} & \text { if }\left(V / P_{1}\right)=-1\end{cases}
$$

and

$$
\beta^{1+\sigma_{2}}=c_{0}^{-2} c_{2}^{\frac{\delta_{2}\left(P_{1}\right)}{2}} \in \begin{cases}\left(\mathbb{F}_{q}^{*}\right)^{2} & \text { if }\left(U / P_{2}\right)=1 \tag{3.2}\\ \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{2} & \text { if }\left(U / P_{2}\right)=-1\end{cases}
$$

Consider $\delta=c \beta \beta_{1}^{x} \beta_{2}^{y}$ with $c \in \mathbb{F}_{q}^{*}$ and $x, y \in\{0,1\}$. We have

$$
\begin{align*}
\delta^{1-\sigma_{1}} & =\beta^{2}\left(\beta^{1+\sigma_{1}}\right)^{-1}\left(\beta_{2}^{1+\sigma_{1}}\right)^{-y} \beta_{2}^{2 y} \\
\delta^{1-\sigma_{2}} & =\beta^{2}\left(\beta^{1+\sigma_{2}}\right)^{-1}\left(\beta_{1}^{1+\sigma_{2}}\right)^{-x} \beta_{1}^{2 x}, \tag{3.3}\\
\delta^{1-\sigma_{1} \sigma_{2}} & =\beta^{2}\left(\beta^{1+\sigma_{1} \sigma_{2}}\right)^{-1}\left(\beta_{1}^{1+\sigma_{2}}\right)^{-x} \beta_{1}^{2 x}\left(\beta_{2}^{1+\sigma_{1}}\right)^{-y} \beta_{2}^{2 y} .
\end{align*}
$$

In the case that $\left(U / P_{2}\right) \neq\left(V / P_{1}\right)$, by (3.1) and (3.2), we have

$$
\begin{equation*}
\beta^{1+\sigma_{1} \sigma_{2}}=\left(\beta^{1+\sigma_{1}}\right)^{\sigma_{2}}\left(\beta^{1+\sigma_{2}}\right)^{-1} \beta^{2}=c \beta^{2} \tag{3.4}
\end{equation*}
$$

for some $c \in \mathbb{F}_{q}^{*} /\left(\mathbb{F}_{q}^{*}\right)^{2}$. Thus $\beta \notin F$ and $c \beta^{1+\sigma_{1} \sigma_{2}}$ cannot be a square in F for any $c \in \mathbb{F}_{q}^{*}$. Hence $h\left(\mathcal{O}_{F}\right) \equiv 2 \bmod 4$ and $c \beta^{1+\sigma_{1} \sigma_{2}}$ is an odd power of μ_{F} for some $c \in \mathbb{F}_{q}^{*}$. By (3.2) and (3.4), we have $N_{F / k}\left(c \beta^{1+\sigma_{1} \sigma_{2}}\right)=$ $c^{2}\left(\beta^{1+\sigma_{1} \sigma_{2}}\right)^{1+\sigma_{1}} \in\left(\mathbb{F}_{q}^{*}\right)^{2}$. Thus $N_{F / k}\left(\mu_{F}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{2}$. If δ is a square in K, then $(-1)^{y}=\left(U / P_{2}\right)$ and $(-1)^{x}=\left(V / P_{1}\right)$. Define

$$
f\left(\sigma_{1}\right)= \begin{cases}\beta\left(\beta^{1+\sigma_{1}}\right)^{-\frac{1}{2}} & \text { if }\left(U / P_{2}\right)=1 \\ \beta \beta_{2}\left(\beta^{1+\sigma_{1}} \beta_{2}^{1+\sigma_{1}}\right)^{-\frac{1}{2}} & \text { if }\left(U / P_{2}\right)=-1\end{cases}
$$

and

$$
f\left(\sigma_{2}\right)= \begin{cases}\beta \beta_{1}\left(\beta^{1+\sigma_{2}} \beta_{1}^{1+\sigma_{2}}\right)^{-\frac{1}{2}} & \text { if }\left(U / P_{2}\right)=1 \\ \beta\left(\beta^{1+\sigma_{2}}\right)^{-\frac{1}{2}} & \text { if }\left(U / P_{2}\right)=-1\end{cases}
$$

where $\left(\beta^{1+\sigma_{1}}\right)^{-\frac{1}{2}},\left(\beta^{1+\sigma_{1}} \beta_{2}^{1+\sigma_{1}}\right)^{-\frac{1}{2}},\left(\beta^{1+\sigma_{2}} \beta_{1}^{1+\sigma_{2}}\right)^{-\frac{1}{2}}$ and $\left(\beta^{1+\sigma_{2}}\right)^{-\frac{1}{2}}$ are uniquely determined up to $\{ \pm 1\}$. Then $\delta^{1-\sigma_{1}}=f\left(\sigma_{1}\right)^{2}$ and $\delta^{1-\sigma_{2}}=$ $f\left(\sigma_{2}\right)^{2}$. Moreover

$$
f\left(\sigma_{1}\right) g\left(\sigma_{1}\right)\left(f\left(\sigma_{2}\right) g\left(\sigma_{2}\right)\right)^{\sigma_{1}} \neq f\left(\sigma_{2}\right) g\left(\sigma_{2}\right)\left(f\left(\sigma_{1}\right) g\left(\sigma_{1}\right)\right)^{\sigma_{2}}
$$

for any $g\left(\sigma_{1}\right), g\left(\sigma_{2}\right) \in\{-1,1\}$. Thus δ is not square in K. Hence $h\left(\mathcal{O}_{K}\right)$ is odd, by Lemma 3.3. This complete the proof of case (i). Similar arguments will give the proof for the rest cases (ii) and (iii). We leave it to the readers.

References

[1] J. Ahn and H. Jung, Kucera group of circular units in function fields. Bull. Korean Math. Soc. 44 (2007), no. 2, 233-239.
[2] R. Kucera, On the parity of the class number of a biquadratic field. J. Number Theory 52 (1995), no. 1, 43-52
[3] R. Kucera, On the Stickelberger ideal and circular units of a compositum of quadratic fields. J. Number Theory 56 (1996), no. 1, 139-166.
[4] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
*
Department of Mathematics
Chungnam National University
Daejon 305-764, Republic of Korea
E-mail: jhahn@cnu.ac.kr
**
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

