
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 23, No. 1, March 2010

ON THE PARITY OF THE CLASS NUMBER OF
SOME REAL BIQUADRATIC FUNCTION FIELD

Jaehyun Ahn* and Hwanyup Jung**

Abstract. Let k = Fq(T ) and A = Fq[T ]. In this paper, we
obtain the the criterion for the parity of the ideal class number
h(OK) of the real biquadratic function field K = k(

√
P1,

√
P2),

where P1, P2 ∈ A be two distinct monic primes of even degree.

1. Introduction and statement of main result

In the paper [2], Kucera has determined the parity of the class number
of any real biquadratic field Q(

√
p,
√

q) in terms of quadratic residue
symbols, where p and q are different primes with p ≡ q ≡ 1 mod 4. In
this paper we give a similar result for some real biquadratic function
fields.

Let k = Fq(T ) and A = Fq[T ]. Assume that q is odd. Let P ∈
A be a monic prime of even degree. Let MP := {A ∈ A : deg A <
deg P and gcd(P,A) = 1} and M+

P := {A ∈ MP : A is monic}. Then
we have ([4, Lemma 16.13]) that

P =
∏

A∈MP

λA
P =

 ∏
A∈M+

P

λA
P


q−1

,

where λP is a primitive P -torsion point of the Carlitz module. We set

√
P := (−1)

qdeg P−1
2(q−1)

 ∏
A∈M+

P

λA
P


q−1
2

.
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Then k(
√

P ) is the unique real quadratic subfield of K+
P , where K+

P is
the maximal real subfield of the P -th cyclotomic function field KP .

Now let P1, P2 ∈ A be two distinct monic primes of even degree.
We let K := k(

√
P1,

√
P2) and F := k(

√
P1P2). Fix a primitive root

Qi ∈ MPi of Pi for i = 1, 2. For Pi - A, let δi(A) be the index of A
relative to Qi. We set

Mi := {A ∈ MPi : 0 ≤ δi(A) < (qdeg Pi − 1)/(q − 1)},
M+

i := {A ∈Mi : (A/Pi) = 1}, M−
i := {A ∈Mi : (A/Pi) = −1}

for i = 1, 2. Then MPi is the disjoint union of the cMi, where c ∈ F∗q . Let
X be the set of all A ∈ MP1P2 such that (A/P2) = 1 and A ≡ Ã mod P1

for some Ã ∈M+
1 . We define

β :=
∏
A∈X

λA
P1P2

.

Let OK and OF be the integral closure of A in K and F , respectively.
Denote by h(OK) and h(OF ) the class numbers of OK and OF , respec-
tively. We also let σi be the generator of Gal(K/k(

√
Pi) for i = 1, 2.

Then the main result of this paper is

Theorem 1.1. Let P1, P2 ∈ A be two distinct monic primes of even
degree and K = k(

√
P1,

√
P2), F = k(

√
P1P2). Let µF be a fundamental

unit of F .

(I) If (P2/P1) = −1, then h(OK) is odd and h(OF ) ≡ 2 mod 4 with
NF/k(µF ) ∈ F∗q\(F∗q)2.

(II) When (P2/P1) = 1, fix U, V ∈ A satisfying U2 ≡ P1 mod P2 and
V 2 ≡ P2 mod P1.
(i) If (U/P2) 6= (V/P1), then h(OK) is odd and h(OF ) ≡ 2 mod 4

with NF/k(µF ) ∈ (F∗q)2.
(ii) Assume that (U/P2) = (V/P1) = −1.

• If β1+σ1 = β1+σ2 , then h(OK) is even and h(OF ) ≡ 4 mod 8
with NF/k(µF ) ∈ F∗q\(F∗q)2.
• If β1+σ1 6= β1+σ2 , then h(OK) is odd and h(OF ) ≡ 2 mod 4
with NF/k(µF ) ∈ (F∗q)2.

(iii) Assume that (U/P2) = (V/P1) = 1.
• If β1+σ1 = β1+σ2 , then h(OK) is even and 4|h(OF ) (resp.
8|h(OF ) whenever NF/k(µF ) ∈ F∗q\(F∗q)2).
• If β1+σ1 6= β1+σ2 , then h(OK) is odd and h(OF ) ≡ 2 mod 4
with NF/k(µF ) ∈ (F∗q)2.
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2. Cyclotomic units

Fix two distinct primes P1, P2 ∈ A+ of even degree. We let K :=
k(
√

P1,
√

P2), F := k(
√

P1P2) and Ki := k(
√

Pi) for i = 1, 2. We also let

ε := NKP1P2
/K(λP1P2) ∈ O∗

K , εi :=
1√
Pi

NKPi
/Ki

(λPi) ∈ O∗
Ki

.

For any A ∈ A with gcd(A,Pi) = 1, let sgnPi(A) be the leading coef-
ficient of Ā, where Ā is the unique element of MPi such that A ≡ Ā mod
Pi. Let Ri be any complete set of representatives of (A/PiA)∗/F∗q . De-
fine

βi :=
∏

A∈Ri

( λA
Pi

sgnPi(A)λPi

)(A/Pi)
,

where (A/Pi) denotes the Legendre symbol. It is shown in [4, Lemma
16.14] that βi is independent of the choice ofRi and βi ∈ O∗

Ki
. Moreover,

we have

Lemma 2.1. β
q−1
2

i = εi.

Proof. It follows from that

βi =
∏

A∈M+
Pi

(A/Pi)=1

λA
Pi

λPi

∏
A∈M+

Pi
(A/Pi)=−1

λPi

λA
Pi

=

( ∏
A∈M+

Pi
,(A/Pi)=1 λA

Pi

)2∏
A∈M+

Pi

λA
Pi

.

by taking Ri = M+
Pi

.

Lemma 2.2. ε = βq−1 with β ∈ O∗
K .

Proof. At first, we note that (c/P1) = (c/P2) = 1 for any c ∈ F∗q . Let
Y be the set of all A ∈ MP1P2 such that (A/P1) = (A/P2) = 1. Then Y
is the disjoint union of the cX , where c ∈ F∗q , and |X | is a multiple of
q − 1. Thus we have

ε =
∏
A∈Y

λA
P1P2

=
∏
A∈X

∏
c∈F∗q

λcA
P1P2

= (−1)|X |
( ∏

A∈X
λA

P1P2

)q−1 = βq−1.

It remains to show that β ∈ K∗. For any A ∈ Y, let c(A) be the unique
element of F∗q such that c(A)A ∈ X . For any A ∈ A with gcd(A,P1P2) =
1, let Ā be the unique element of MP1P2 such that A ≡ Ā mod P1P2.
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For any B ∈ MP1P2 , we have {c(AB)AB : A ∈ X} = X . Thus, for any
B ∈ Y, we have

βσB =
∏
A∈X

λAB
P1P2

=
∏
A∈X

c(AB)−1λ
c(AB)AB
P1P2

= β
∏
A∈X

c(AB)−1.

For any C ∈M+
1 , we have |{A ∈ X : A ≡ C mod P1}| = (qdeg P2 − 1)/2.

Thus ∏
A∈X

c(AB)−1 =
∏

C∈M+
1

∏
A∈X

A≡C mod P1

c(AB)−1

=
∏

C∈M+
1

(c(CB)−1)
qdeg P2−1

2 = 1.

Therefore β ∈ K∗.

Let ci ∈ F∗q be the unique element such that Q
qdeg Pi−1

q−1

i ≡ ci mod Pi.
We also let σi be the generator of Gal(K/Ki).

Lemma 2.3.

β1+σ1 =


c

δ1(P2)
2

1 if (P2/P1) = 1,

c
δ1(P2)+1

2
1

(∏
A∈M+

1
sgnP1

(A)∏
A∈M−

1
sgnP1

(A)

)
β1 if (P2/P1) = −1.

Proof. Choose A′ ∈ MP1P2 such that A′ ≡ 1 mod P1 and (A′/P2) =
−1. Then σA′ |K = σ1, where σA′ ∈ Gal(KP1P2/k). Thus we have

β1+σ1 =
∏

B∈M+
1

(λB
P1

)1−Frob−1(P2,KP1
) =

∏
B∈M+

1
λB

P1∏
B∈M+

1
λBD

P1

,

where D ∈ A with DP2 ≡ 1 mod P1. We only prove the case that
(P1/P2) = −1. In this case, we have (D/P1) = −1, and so δ1(D) is odd.
Write δ1(D)−1

2 = n1+ (qd1−1)
2(q−1) n2 with 0 ≤ n1 < (qd1−1)

2(q−1) and 0 ≤ n2 < q−1.
Then ∏

B∈M+
1

λBD
P1

= c
δ1(D)−1

2
1

∏
0≤j< qd1−1

2(q−1)

λ
Q2j+1

1
P1

= c
δ1(D)−1

2
1

∏
B∈M−

1

λB
P1

.

Thus, by taking R1 = M1 in definition of β1, we have

β1+σ1 = c
δ1(P2)+1

2
1

(∏
A∈M+

1
sgnP1(A)∏

A∈M−
1

sgnP1(A)

)
β1.
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This completes the proof.

Corollary 2.4.

β1+σ2 =


c−2
0 c

δ2(P1)
2

2 if (P2/P1) = 1,

c−2
0 c

δ2(P1)+1
2

2

(∏
A∈M+

2
sgnP2

(A)∏
A∈M−

2
sgnP2

(A)

)
β2 if (P2/P1) = −1.

Lemma 2.5. For any B ∈ A with Pi - B, we have∏
A∈Mi

( sgnPi(AB)
sgnPi(A)sgnPi(B)

)(A/Pi)
=

{
1 if (B/Pi) = 1,

∈ F∗q\(F∗q)2 if (B/Pi) = −1.

Proof. We only prove the case that (B/Pi) = −1. We may as-
sume that B ∈ M−

i , so that B ≡ Q2n+1
i mod Pi for some 0 ≤ n <

(qdeg Pi − 1)/2(q − 1). Then we have∏
A∈Mi

( sgnPi(AB)
sgnPi(A)sgnPi(B)

)(A/Pi)

= cn
i

∏
A∈M−

i
sgnPi(A)∏

A∈M+
i

sgnPi(A)
· c−n−1

i

∏
A∈M−

i
sgnPi(A)∏

A∈M+
i

sgnPi(A)
.

Hence ∏
A∈Mi

( sgnPi(AB)
sgnPi(A)sgnPi(B)

)(A/Pi)

= c−1
i

(∏
A∈M−

i
sgnPi(A)∏

A∈M+
i

sgnPi(A)

)2

∈ F∗q\(F∗q)2.

3. Proof of Theorem 1.1

Let C′K be the subgroup of O∗
K generated by F∗q and {β, β1, β2}. Then,

by Lemma 2.1 and 2.2, we have [O∗
K : C′K ] = h(OK). Similarly the

subgroup C′F of O∗
F generated by F∗q and NK/F (β) = β1+σ1σ2 has index

[O∗
F : C ′

F ] = 1
2h(OF ) by Lemma 2.2. Thus h(OF ) is always even.

Lemma 3.1. (cβ1)1+σ2 and (cβ2)1+σ1 are contained in F∗q\(F∗q)2 for
any c ∈ F∗q .
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Proof. We only prove that (cβ1)1+σ2 ∈ F∗q\(F∗q)2 for any c ∈ F∗q .
Choose B ∈ MP1P2 such that (B/P1) = −1 and (B/P2) = 1. Then
σB|K = σ2, where σB ∈ Gal(KP1P2/k). By taking R1 = M1, we have

βσ2
1 = β−1

1

∏
A∈M1

( sgnP1(AB)
sgnP1(A)sgnP1(B)

)(A/P1)
.

Thus, by Lemma 2.5, β1+σ2
1 ∈ F∗q\(F∗q)2. Therefore (cβ1)1+σ2 ∈ F∗q\(F∗q)2

for any c ∈ F∗q .

Corollary 3.2. None of cβ1, cβ2 and cβ1β2 is a square in K for any
c ∈ F∗q .

Proof. By Lemma 3.1, cβ1 and cβ2 are not square in K for any c ∈ F∗q .
Since (cβ1β2)1+σ1 = c2β2

1β1+σ1
2 and (cβ1β2)1+σ2 = c2β2

2β1+σ2
1 , cβ1β2 is

not a square in K.

Lemma 3.3. h(OK) is even if and only if δ = cββx
1βy

2 is a square in
K for some x, y ∈ {0, 1} and c ∈ F∗q .

Proof. It is an immediate consequence of Lemma 3.1, Corollary 3.2
and the fact that h(OK) = [O∗

K : C′K ].

Set GK := Gal(K/k) for simplicity. A function f : GK → K is called
a crossed homomorphism if f(στ) = f(σ)f(τ)σ for any σ, τ ∈ GK . The
following Lemma is taken from [3, Proposition 2].

Lemma 3.4. Let µ ∈ O∗
K be such that there exists a function f :

GK → K satisfying µ1−σ = f(σ)2 for any σ ∈ GK . If there is a function
g : GK → {±1} such that fg is a crossed homomorphism, then cµ is a
square in K for some c ∈ F∗q .

Now we give the proof of Theorem 1.1. At first, let us consider the
case that (P1/P2) = −1. By Lemma 2.3 and Corollary 2.4, we have

β1+σ1σ2 = (β1+σ1)σ2(β1+σ2)−1β2 = cβσ2
1 β−1

2 β2

for some c ∈ F∗q . Thus (β1+σ1σ2)1+σ1 ∈ F∗q\(F∗q)2, and so cβ1+σ1σ2 is not
a square in F for any c ∈ F∗q . Hence h(OF ) ≡ 2 mod 4 and NF/k(µF ) ∈
F∗q\(F∗q)2. Consider δ = cββx

1βy
2 with c ∈ F∗q and x, y ∈ {0, 1}. Then, by

Lemma 2.3, we have

δ1−σ2 = β1−σ2β
x(1−σ2)
1 = β2(β1+σ2)−1β2x

1 (β1+σ2
1 )−x = cβ−1

1 (ββx
1 )2

for some c ∈ F∗q . Thus, by Corollary 3.2, δ1−σ2 is not a square in K and
so is δ. Hence, by Lemma 3.3, h(OK) is odd.
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Now let us suppose that (P1/P2) = 1. Fix U, V ∈ A such that

U2 ≡ P1 mod P2 and V 2 ≡ P2 mod P1. Clearly (V/P1) = (−1)
δ1(P2)

2

and (U/P2) = (−1)
δ2(P1)

2 . By Lemma 2.3 and Corollary 2.4, we have

β1+σ1 = c
δ1(P2)

2
1 ∈

{
(F∗q)2 if (V/P1) = 1,

F∗q\(F∗q)2 if (V/P1) = −1,
(3.1)

and

β1+σ2 = c−2
0 c

δ2(P1)
2

2 ∈

{
(F∗q)2 if (U/P2) = 1,

F∗q\(F∗q)2 if (U/P2) = −1.
(3.2)

Consider δ = cββx
1βy

2 with c ∈ F∗q and x, y ∈ {0, 1}. We have

δ1−σ1 = β2(β1+σ1)−1(β1+σ1
2 )−yβ2y

2 ,

δ1−σ2 = β2(β1+σ2)−1(β1+σ2
1 )−xβ2x

1 ,(3.3)

δ1−σ1σ2 = β2(β1+σ1σ2)−1(β1+σ2
1 )−xβ2x

1 (β1+σ1
2 )−yβ2y

2 .

In the case that (U/P2) 6= (V/P1), by (3.1) and (3.2), we have

(3.4) β1+σ1σ2 = (β1+σ1)σ2(β1+σ2)−1β2 = cβ2

for some c ∈ F∗q/(F∗q)2. Thus β 6∈ F and cβ1+σ1σ2 cannot be a square in
F for any c ∈ F∗q . Hence h(OF ) ≡ 2 mod 4 and cβ1+σ1σ2 is an odd power
of µF for some c ∈ F∗q . By (3.2) and (3.4), we have NF/k(cβ1+σ1σ2) =
c2(β1+σ1σ2)1+σ1 ∈ (F∗q)2. Thus NF/k(µF ) ∈ (F∗q)2. If δ is a square in K,
then (−1)y = (U/P2) and (−1)x = (V/P1). Define

f(σ1) =

{
β(β1+σ1)−

1
2 if (U/P2) = 1,

ββ2(β1+σ1β1+σ1
2 )−

1
2 if (U/P2) = −1,

and

f(σ2) =

{
ββ1(β1+σ2β1+σ2

1 )−
1
2 if (U/P2) = 1,

β(β1+σ2)−
1
2 if (U/P2) = −1,

where (β1+σ1)−
1
2 , (β1+σ1β1+σ1

2 )−
1
2 , (β1+σ2β1+σ2

1 )−
1
2 and (β1+σ2)−

1
2 are

uniquely determined up to {±1}. Then δ1−σ1 = f(σ1)2 and δ1−σ2 =
f(σ2)2. Moreover

f(σ1)g(σ1)(f(σ2)g(σ2))σ1 6= f(σ2)g(σ2)(f(σ1)g(σ1))σ2

for any g(σ1), g(σ2) ∈ {−1, 1}. Thus δ is not square in K. Hence h(OK)
is odd, by Lemma 3.3. This complete the proof of case (i). Similar
arguments will give the proof for the rest cases (ii) and (iii). We leave
it to the readers.
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