• 제목/요약/키워드: moment matrix

검색결과 209건 처리시간 0.019초

SOME RESULTS OF MOMENTS IN MULTIVARIATE STATISTICAL DISTRIBUTION

  • Chul Kang;Park, Sang-Don
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.323-334
    • /
    • 2003
  • We review the developmental history of the moment matrix of matrix quadratic form. This paper also investigates, the moment matrix of (non-central) Wishart distribution, which is multi-version of X$^2$ distribution.

분자의 사중극자모멘트의 계산 (제1보). 연산자법에 의한 사중극자모멘트행렬요소의 계산 (Calculation of the Molecular Quadrupole Moments (I). Calculation for the Quadrupole Moment Matrix Elements by Operator Technique)

  • 안상운;고정수
    • 대한화학회지
    • /
    • 제23권5호
    • /
    • pp.296-306
    • /
    • 1979
  • 연산자법을 사중극자모멘트행렬요소를 계산하는데 응용하였다. Spherical harmonics의 전개방법과 사중극자모멘트행렬요소를 Mulliken의 overlap integral 로 전환시키는 방법을 사용하여 Slater 궤도함수쌍에 대한 사중극자모멘트행렬요소이 기본식을 유도하였다. 두 방법에 의하여 계산한 사중극자모멘트행렬요소의 값이 일치하였으며 바닥상태의 HCl 분자에 대하여 계산한 사중극자모멘트의 값이 Nesbet의 값과 일치하였다.

  • PDF

The General Mornent of Non-central Wishart Distribution

  • Chul Kang;Kim, Byung-Chun
    • Journal of the Korean Statistical Society
    • /
    • 제25권3호
    • /
    • pp.393-406
    • /
    • 1996
  • We obtain the general moment of non-central Wishart distribu-tion, using the J-th moment of a matrix quadratic form and the 2J-th moment of the matrix normal distribution. As an example, the second moment and kurtosis of non-central Wishart distribution are also investigated.

  • PDF

쌍극자모멘트 행렬요소를 계산하는 두가지 방법 (Two Method for Evaluation of the Dipole Moment Matrix Elements)

  • 안상운
    • 대한화학회지
    • /
    • 제22권4호
    • /
    • pp.229-238
    • /
    • 1978
  • Spherical harmonic의 전개방법과 쌍극자모멘트의 행렬요소를 Mulliken의 overlap integral로 전환시키는 방법을 사용하여 쌍극자모멘트의 행렬요소를 계산하는 두가지 방법을 발전시켰다. 이 두 방법에 의하여 계산한 쌍극자모멘트행렬요소의 값은 서로 일치하였다.

  • PDF

BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT

  • Yoo, Seonguk
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.61-71
    • /
    • 2020
  • Up to the present day, the best solution we can get to the truncated moment problem (TMP) is probably the Flat Extension Theorem. It says that if the corresponding moment matrix of a moment sequence admits a rank-preserving positive extension, then the sequence has a representing measure. However, constructing a flat extension for most higher-order moment sequences cannot be executed easily because it requires to allow many parameters. Recently, the author has considered various decompositions of a moment matrix to find a solution to TMP instead of an extension. Using a new approach with the Hadamard product, the author would like to introduce more techniques related to moment matrix decompositions.

Truncated Multi-index Sequences Have an Interpolating Measure

  • Choi, Hayoung;Yoo, Seonguk
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.107-118
    • /
    • 2022
  • In this note we observe that any truncated multi-index sequence has an interpolating measure supported in Euclidean space. It is well known that the consistency of a truncated moment sequence is equivalent to the existence of an interpolating measure for the sequence. When the moment matrix of a moment sequence is nonsingular, the sequence is naturally consistent; a proper perturbation to a given moment matrix enables us to confirm the existence of an interpolating measure for the moment sequence. We also illustrate how to find an explicit form of an interpolating measure for some cases.

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

웨이블릿을 이용한 파수영역 전자파 산란 해석법 연구 (A Study of Spectral Domain Electromagnetic Scattering Analysis Applying Wavelet Transform)

  • 빈영부;주세훈;이정흠;김형동
    • 한국전자파학회논문지
    • /
    • 제11권3호
    • /
    • pp.337-344
    • /
    • 2000
  • 파수영역에서 모멘트법의 엄피던스 행렬의 특정을 관찰하고 이를 웨이블릿 변환을 이용하여 효율적으로 표현 하는 방법을 연구하였다. 영상 선호처리 분야에서 자주 사용되는 이차원 쿼드트리(2-D Quadtree)방법(행렬의 $\phi$ 부분에만 웨이블릿 변환을 적용하는 방법)을 적용하여 모멘트 행렬을 성기게 만들었다. 웨이블릿이 적용된 모멘트 행렬을 CG( Conjugate-Gradient)법을 이용하여 모멘트 법의 계산량과 메모리를 줄였다. 수치적 결과는 정사 각형 실린더의 경우 임피던스 행렬의 0이 아닌 값이 O($N^{1.6}$)으로 증가하는 것을 관찰하였다.

  • PDF

Truncated Complex Moment Problem with Data in a Circle

  • Lee, Sang-Hun;Sim, Jung-Hui
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.241-247
    • /
    • 2005
  • Let ${\gamma}{\equiv}\left{{\gamma}_{ij}\right}(0{\leq}i+j{\leq}2n)$ be a collection of complex numbers with ${\gamma}_{00}>0$ and ${\gamma}_{ji}={\bar{\gamma}}_{ij}$. The truncated complex moment problem for ${\gamma}$ entails finding a positive Borel measure ${\mu}$ supported in the complex plane ${\mathbb{C}}$ such that ${\gamma}_{ij}={\int}{\bar{z}}^{i}z^jd{\mu}(z)(0{\leq}i+j{\leq}2n)$. We solve this truncated moment problem with data in a circle and discuss the behavior of data in an extended moment matrix.

  • PDF

4차 통계량을 이용한 Matrix Pencil Method (Matrix Pencil Method Using Fourth-order Statistic)

  • 장우진;왕혁소;주위위;고진환
    • 한국통신학회논문지
    • /
    • 제31권6C호
    • /
    • pp.629-636
    • /
    • 2006
  • Array 신호처리에서 복소 지수함수의 합으로 구성된 신호의 파라미터를 추정하는데 고차 통계를 이용할 수 있다. 본 논문에서는 기존의 MPM(matrix pencil method)보다 효과적으로 DOA를 판별하기 위해 MPM에 4차 cumulant와 moment 통계량을 적용하였다. 4차 cumulant 통계량은 선형 배열안테나에 입사하는 신호에 포함된 Gaussian 잡음을 효과적으로 감소시킬 수 있다. Gaussian 잡음이 존재하는 환경에서 기존의 방법과 4차 통계량을 이용한 방법을 시뮬레이션 함으로써 SNR과 DOA 분해능에 대하여 성능을 분석하였다. 결과로써 4차 통계량을 이용한 MPM이 기존의 MPM보다 우수함을 보였으며, 또한 4차 moment보다는 4차 cumulant 적용이 더 우수함을 증명하였다.