KYUNGPOOK Math. J. 45(2005), 241-247

Truncated Complex Moment Problem with Data in a Circle

Sang Hun Lee and Jung Hui Sim
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
e-mail: sanghlee@knu.ac.kr

Abstract. Let $\gamma \equiv\left\{\gamma_{i j}\right\}(0 \leq i+j \leq 2 n)$ be a collection of complex numbers with $\gamma_{00}>0$ and $\gamma_{j i}=\bar{\gamma}_{i j}$. The truncated complex moment problem for γ entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that $\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu(z)$ $(0 \leq i+j \leq 2 n)$. We solve this truncated moment problem with data in a circle and discuss the behavior of data in an extended moment matrix.

1. Introduction and preliminaries

Given a doubly indexed finite sequence of complex numbers

$$
\gamma: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}, \cdots, \gamma_{0,2 n}, \gamma_{1,2 n-1}, \cdots, \gamma_{2 n-1,1}, \gamma_{2 n, 0}
$$

with $\gamma_{00}>0$ and $\gamma_{j i}=\bar{\gamma}_{i j}$, the truncated complex moment problem entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that

$$
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu \quad(0 \leq i+j \leq 2 n)
$$

μ is called a representing measure for γ, and γ is called a truncated moment sequence. This truncated complex moment problem has been well-developed in several articles ([4], [5], [6], [7], [8], [10], [9]). Also, given a closed subset $K \subset \mathbb{C}$ and a doubly indexed infinite sequence of complex numbers $\gamma=\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$:

```
\gamma00,}\mp@subsup{\gamma}{01}{},\mp@subsup{\gamma}{10}{},\mp@subsup{\gamma}{02}{},\mp@subsup{\gamma}{11}{},\mp@subsup{\gamma}{20}{},\cdots,\mp@subsup{\gamma}{0,2n}{},\mp@subsup{\gamma}{1,2n-1}{},\cdots,\mp@subsup{\gamma}{2n-1,1}{},\mp@subsup{\gamma}{2n,0}{},
```

with $\gamma_{00}>0$ and $\gamma_{j i}=\bar{\gamma}_{i j}$, the (full) complex moment problem entails finding a positive Borel measure μ such that

$$
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu \quad(i, j \geq 0)
$$

and supp $\mu \subset K$ (cf. [2]). In [4] and [5], one studied the truncated complex moment problem based on positivity and extension properties of the associated moment

Received March 4, 2004, and, in revised form, May 24, 2004.
2000 Mathematics Subject Classification: 44A60.
Key words and phrases: truncated complex moment problem, moment matrix, representing measure.
matrix $M(n)$ which is defined below. For $n \geq 1$, let $m=m(n):=(n+1)(n+2) / 2$. For $A \in \mathcal{M}_{m}(\mathbb{C})$ (the set of $m \times m$ complex matrices), we denote the successive rows and columns according to the following lexicographic-functional ordering

$$
\underbrace{1}_{(1)}, \underbrace{Z, \bar{Z}}_{(2)}, \underbrace{Z^{2}, \bar{Z} Z, \bar{Z}^{2}}_{(3)}, \underbrace{Z^{3}, \bar{Z} Z^{2}, \bar{Z}^{2} Z, \bar{Z}^{3}}_{(4)}, \cdots, \underbrace{Z^{n}, \cdots, \bar{Z}^{n}}_{(n+1)} .
$$

In particular, rows or columns indexed by $1, Z, \cdots, Z^{n}$ are said to be analytic. For $0 \leq i+j \leq n, 0 \leq l+k \leq n$, we denote the entry in row $\bar{Z}^{l} Z^{k}$, column $\bar{Z}^{i} Z^{j}$ by $A_{(l, k)(i, j)}$. We define $M(n):=M(n)(\gamma) \in \mathcal{M}_{m(n)}(\mathbb{C})$ as follows: for $0 \leq k+l \leq n$, $0 \leq i+j \leq n$, the entry in row $\bar{Z}^{k} Z^{l}$ and column $\bar{Z}^{i} Z^{j}$ is $M(n)_{(k, l)(i, j)}=\gamma_{l+i, j+k}$.

For example, if $n=1$, the quadratic moment matrix for

$$
\gamma: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}
$$

corresponds to

$$
M(1)=\left(\begin{array}{lll}
\gamma_{00} & \gamma_{01} & \gamma_{10} \\
\gamma_{10} & \gamma_{11} & \gamma_{20} \\
\gamma_{01} & \gamma_{02} & \gamma_{11}
\end{array}\right)
$$

and if $n=2$, the quartic moment matrix for
$\gamma: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}, \gamma_{03}, \gamma_{12}, \gamma_{21}, \gamma_{30}, \gamma_{04}, \gamma_{13}, \gamma_{22}, \gamma_{31}, \gamma_{40}$
corresponds to

$$
M(2)=\left(\begin{array}{llllll}
\gamma_{00} & \gamma_{01} & \gamma_{10} & \gamma_{02} & \gamma_{11} & \gamma_{20} \\
\gamma_{10} & \gamma_{11} & \gamma_{20} & \gamma_{12} & \gamma_{21} & \gamma_{30} \\
\gamma_{01} & \gamma_{02} & \gamma_{11} & \gamma_{03} & \gamma_{12} & \gamma_{21} \\
\gamma_{20} & \gamma_{21} & \gamma_{30} & \gamma_{22} & \gamma_{31} & \gamma_{40} \\
\gamma_{11} & \gamma_{12} & \gamma_{21} & \gamma_{13} & \gamma_{22} & \gamma_{31} \\
\gamma_{02} & \gamma_{03} & \gamma_{12} & \gamma_{04} & \gamma_{13} & \gamma_{22}
\end{array}\right)
$$

In the recent works, one discussed moment problem concentrated on support of the given moment measure. As a different approach we discuss moment problem concentrated on a given data. In this note we consider moment problem with a data on a circle.

2. Some known properties

In this section we recall some known properties from [3] and [4], which are used frequently in this note.
$\left(\mathbf{P}_{1}\right)$. Let A_{k} be the compression of A to the first $(k+1)$ rows and columns, i.e.,

$$
A=\left(\begin{array}{ll}
A_{k} & * \\
* & *
\end{array}\right)
$$

and let $\Delta_{k}:=\operatorname{det}\left(A_{k}\right)$. Assume that $A \geq 0$ and that $\Delta_{k}=0$ for some k. Then, $\Delta_{l}=0$ for all $l \geq k$.
$\left(\mathbf{P}_{2}\right)$. If $M(1) \geq 0$ and $\operatorname{rank} M(1)=1$, then $\gamma_{00} \cdot \delta_{\gamma_{01} / \gamma_{00}}$ is the unique representing measure of γ.

For $k, l \in \mathbb{Z}_{+}$, let $A \in \mathcal{M}_{k}(\mathbb{C}), A=A^{*}, B \in M_{k, l}(\mathbb{C}), C=C^{*} \in M_{l}(\mathbb{C})$; we refer to any matrix of the form

$$
\widetilde{A} \equiv\left(\begin{array}{ll}
A & B \\
B^{*} & C
\end{array}\right)
$$

as an extension of A.
$\left(\mathbf{P}_{3}\right)$. Let A, B, C and \widetilde{A} be as above, let $V_{1}, V_{2}, \cdots, V_{k}$ be the columns of A, let V_{k+1}, \cdots, V_{k+l} be the columns of B, and let $\widetilde{V}_{1}, \widetilde{V}_{2}, \cdots, \widetilde{V}_{k}, \widetilde{V}_{k+1}, \widetilde{V}_{k+l}$ be the columns of \widetilde{A}. Assume that $\widetilde{A} \geq 0$.
i) If there exist scalars $a_{1}, a_{2}, \cdots, a_{k}$ such that $\sum_{i=1}^{k} a_{i} V_{i}=0$, then $\sum_{i=1}^{k} a_{i} \widetilde{V}_{i}=0$.
ii) If \widetilde{A} is a flat extension of A and $\sum_{i=1}^{k+l} a_{i} V_{i}=0$, then $\sum_{i=1}^{k+l} a_{i} \widetilde{V}_{i}=0$.
$\left(\mathbf{P}_{4}\right)$. If γ is of flat data type and $M(n)=M(n)(\gamma) \geq 0$, then $M(n)$ also admits a unique flat extension $M(\infty) \geq 0$, where $M(\infty)$ is a finite-rank positive infinite moment matrix.

3. Main results

We now begin the main section with some lemmas.
Lemma 3.1. Let $M(1)$ be a positive moment matrix. Given

$$
\gamma=\gamma^{(2)}: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}
$$

with $\gamma_{00}>0$ and $\gamma_{j i}=\bar{\gamma}_{i j}$, if $\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2}$ lies in $\rho \mathbb{T}:=\{\rho z:|z|=1\}(\rho>0)$, then
(i) there exists the unique representing measure $\mu=\rho \cdot \delta_{\gamma_{01} / \rho}$ and
(ii) $\gamma_{01}^{2}=\rho \cdot \gamma_{02}$.

Proof. Since $\gamma_{00}>0$ and $\gamma_{00} \in \rho \mathbb{T}$, we have $\gamma_{00}=\rho$. For brevity, we write $\gamma_{01}=u$, $\gamma_{02}=v, \gamma_{11}=r$. Then we have

$$
M(1)=\left(\begin{array}{ccc}
\rho & u & \bar{u} \\
\bar{u} & r & \bar{v} \\
u & v & r
\end{array}\right)
$$

Let

$$
A=\left(\begin{array}{cc}
\rho & u \\
\bar{u} & r
\end{array}\right)
$$

Since $M(1)$ is self adjoint, obviously r is a real number. Since $M(1)$ is a moment matrix, $r \geq 0$ and so $r=\rho$. Since $M(1) \geq 0$ and $\operatorname{det}(A)=\rho^{2}-|u|^{2}=0$, by $\left(\mathrm{P}_{1}\right)$, $\operatorname{det} M(1)=0$. On the other hand, by some computation, we have

$$
M(1) \stackrel{R}{\sim}\left(\begin{array}{ccc}
\rho & u & \bar{u} \\
\rho^{2} & \rho u & u \bar{v} \\
\rho^{2} & \bar{u} v & \bar{u} \rho
\end{array}\right) \stackrel{R}{\sim}\left(\begin{array}{ccc}
\rho & u & \bar{u} \\
0 & 0 & u \bar{v}-\bar{u} \rho \\
0 & \bar{u} v-u \rho & 0
\end{array}\right)
$$

where $\stackrel{R}{\sim}$ is row equivalent. Hence

$$
\operatorname{det} M(1)=0=-\rho|\bar{u} v-u \rho|^{2}
$$

So $\bar{u} v=u \rho$, and so

$$
\gamma_{02}=v=\frac{u^{2} \rho}{|u|^{2}}=\frac{u^{2}}{\rho}
$$

Since $M(1) \geq 0$ and $\operatorname{rank} M(1)=1$, by $\left(\mathrm{P}_{2}\right)$, there exist the unique representing measure $\mu=\rho \cdot \delta_{\gamma_{01} / \rho}$ of γ.
Lemma 3.2. Let
$\gamma=\gamma^{(2 n)}: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}, \cdots, \gamma_{0,2 n}, \gamma_{1,2 n-1}, \cdots, \gamma_{2 n-1,1}, \gamma_{2 n, 0}$
be a data of complex numbers. Let $M(n)$ be the positive moment matrix corresponding to γ. If the data $\gamma^{(2 n)}$ lies in $\rho \mathbb{T}$, then
(i) the extended infinite moment matrix $M(\infty)$ satisfies rank $M(\infty)=\operatorname{rank}$ $M(n)=1$,
(ii) there exists the unique associated representing measure $\widetilde{\mu}=\rho \cdot \delta_{\gamma_{01} / \rho}(=\mu)$ for $M(\infty)$,
(iii) $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ satisfies $\gamma_{i j}=\rho^{1+i-j} \gamma_{01}^{j-i}$, and
(iv) the flat extended moment sequence $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ is also in $\rho \mathbb{T}$.

Proof. Since $M(n)$ is a flat extension of $M(1)$, according to $\left(\mathrm{P}_{3}\right)$ and $\left(\mathrm{P}_{4}\right)$, the representing measure for $M(n)$ also is $\mu=\rho \delta_{\gamma_{01} / \rho}$. Since

$$
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu \quad(0 \leq i+j \leq 2 n)
$$

we have

$$
\gamma_{00}=\int \rho d \delta_{\gamma_{01} / \rho}=\rho \int d \delta_{\gamma_{01} / \rho}=\rho
$$

Hence $\rho=\gamma_{00}=\rho_{k}$, and $u_{k}=\gamma_{01} / \rho$. Thus $\mu_{k}=\mu$ for all $k=1,2, \cdots$. That is, $M(\infty)$ has a unique representing measure $\mu=\rho \delta_{\gamma_{01} / \rho}$. Moreover, since

$$
\begin{aligned}
\gamma_{i j} & =\int \bar{z}^{i} z^{j} d \mu_{k}=\int \bar{z}^{i} z^{j} \rho d \delta_{\gamma_{01} / \rho} \\
& =\rho \cdot\left(\frac{\bar{\gamma}_{01}}{\rho}\right)^{i}\left(\frac{\gamma_{01}}{\rho}\right)^{j}=\rho^{1-i-j} \cdot \bar{\gamma}_{01}^{i} \gamma_{01}^{j}
\end{aligned}
$$

and $\bar{\gamma}_{01}=\rho^{2} \gamma_{01}^{-1}\left(\right.$ indeed, $\left.\gamma_{01} \bar{\gamma}_{01}=\rho^{2}\right)$, we have

$$
\gamma_{i j}=\rho^{1-i-j} \cdot \rho^{2 i} \gamma_{01}^{-i} \cdot \gamma_{01}^{j}=\rho^{1+i-j} \gamma_{01}^{j-i} .
$$

Finally, since

$$
\left|\gamma_{i j}\right|=\left|\rho^{1+i-j} \gamma_{01}^{j-i}\right|=\rho
$$

$\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ lies in $\rho \mathbb{T}$.
Recall that if $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2}$ is in $\rho \mathbb{T}$, then by Lemma 3.2 the infinite moment matrix $M(\infty)$ is well-constructed.

Theorem 3.3. Suppose $M(n)$ is a positive moment matrix. Let $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2 n}$ be a given data lies in $\rho \mathbb{T}(\rho>0)$ and let $\widetilde{\gamma}=\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ be the flat extension data corresponding to $M(\infty)$. Then,
i) if $\gamma_{01}=\rho \cdot e^{i 2 \pi \frac{n}{m}}$ with $(m, n)=1$, then $\widetilde{\gamma}$ is exactly the set of vertices of a regular m-polygon inscribed in $\rho \mathbb{T}$,
ii) if $\gamma_{01}=\rho \cdot e^{i 2 \pi \theta}$, where θ is an irrational number, then $\widetilde{\gamma}$ is dense in $\rho \mathbb{T}$.

Proof. i) Since $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2 n}$ lies in $\rho \mathbb{T}$, by Lemma 3.2 the flat extended moment sequences $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ lies also in $\rho \mathbb{T}$ and the associated representing measure is $\widetilde{\mu}=\rho \cdot \delta_{\gamma_{01} / \rho}$. Hence the extended flat data $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ satisfies

$$
\begin{aligned}
\gamma_{i j} & =\rho^{1+i-j} \gamma_{01}^{j-i} \quad\left(\text { since }\left|\gamma_{01}\right|=\rho\right) \\
& =\rho^{1+i-j}\left(\rho \cdot e^{i 2 \pi \frac{n}{m}}\right)^{j-i} \\
& =\rho \cdot\left(e^{i 2 \pi \frac{n}{m}}\right)^{j-i}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty} & =\left\{\left.\rho \cdot\left(e^{i 2 \pi \frac{n}{m}}\right)^{k} \right\rvert\, k \in \mathbb{Z}\right\} \\
& =\left\{\left.\rho \cdot\left(e^{i \frac{2 \pi}{m}}\right)^{n k} \right\rvert\, k=0,1, \cdots, m-1\right\}
\end{aligned}
$$

Since

$$
\frac{2 \pi}{m} n(k+1)-\frac{2 \pi}{m} n k=\frac{2 \pi}{m} n
$$

it is independent on k and the number of vertices is m. So, $\widetilde{\gamma}=\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ is exactly the set of vertices of a regular m-polygon inscribed in $\rho \mathbb{T}$.
ii) Since

$$
\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}=\left\{\rho \cdot e^{i 2 \pi \theta k} \mid k \in \mathbb{Z}\right\}
$$

and θ is an irrational number, it is obvious that $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ is dense in $\rho \mathbb{T}$.
The following corollary comes immediately from Theorem 3.3.
Corollary 3.4. Suppose $M(n)$ is a positive moment matrix. Let $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2 n}$ is exactly the set Γ_{k} of vertices of a regular k-polygon inscribed in $\rho \mathbb{T}$. Then $\widetilde{\gamma}=$
$\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ is the same set Γ_{k}.
Remark 3.5. We can consider an arbitrary circle $\partial D\left(z_{0}, \rho\right):=\rho \mathbb{T}+z_{0}$ instead of $\rho \mathbb{T}$ in Section 3. But the extended data $\widetilde{\gamma}=\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ can not be contained in $\partial D\left(z_{0}, \rho\right)$ when $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2 n}$ is in $\partial D\left(z_{0}, \rho\right)$. We can give a counter examples for this concept. Consider $\gamma_{00}=1, \gamma_{01}=0, \gamma_{02}=0, \gamma_{11}=1$. Then $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2} \subset$ $\partial D(1 / 2,1 / 2)$. By some computations, we may obtain

$$
M(2)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & i & -i & \sqrt{2} \\
0 & 0 & 1 & \sqrt{2} & i & -i \\
0 & -i & \sqrt{2} & 3 & -1+\sqrt{2} i & -2 \sqrt{2} i \\
1 & i & -i & -1-\sqrt{2} i & 3 & -1+\sqrt{2} i \\
0 & \sqrt{2} & i & 2 \sqrt{2} i & -1-\sqrt{2} i & 3
\end{array}\right)
$$

with $\operatorname{rank} M(2)=\operatorname{rank} M(1)=3$, and so $M(2)$ is a flat extension of $M(1)$. Obviously we have that $\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 4} \nsubseteq \partial D(1 / 2,1 / 2)$. Hence $\widetilde{\gamma}=\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ can not be contained in $\partial D\left(z_{0}, \rho\right)$ (See [8] for more examples).

Remark 3.6. Like the approach in this section, when a data $\gamma=\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 2 n}$ is in $D(0, \rho):=\{z \in \mathbb{C}:|z| \leq 1\}$, does the flat extension infinite data $\left\{\gamma_{i j}\right\}_{i, j=0}^{\infty}$ lie in $D(0, \rho)$? The answer is negative (indeed, consider a data $\gamma: 1,0,0,0,1,0$, i.e.,

$$
M(1)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Then matrix $M(2)$ in Remark 3.5 is a flat extension of $M(1)$, but the data $\left\{\gamma_{i j}\right\}_{0 \leq i+j \leq 4}$ doesn't lie in $D(0,1)$.)

Acknowledgement. The first author was supported by Kyungpook National University Research Fund, 2002. The second author was supported by Korea Research Foundation Grant (KRF-2002-070-C00006).

References

[1] N. Akhiezer, The Classical Moment Problem, Hafner Publ. Co., New York, 1965.
[2] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math., 59(1975), 317-325.
[3] R. Curto and Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations Operator Theory, 18(1994), 369-426.
[4] R. Curto and Fialkow, Solution of the truncated complex moment problems for flat data, Memoirs Amer. Math. Soc., 568(1996).
[5] R. Curto and Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc., 648(1998).
[6] R. Curto and Fialkow, The truncated complex K-moment problem, Trans. Amer. Math. Soc., 352(2000), 2825-2855.
[7] R. Curto and Fialkow, The quadratic moment problem for the unit disc and unit circle, Integral Equations Operator Theory, 38(2000), 377-409.
[8] R. Curto and Fialkow, Solution of the singular quartic moment problem, J. Operator Theory, 48(2002), 315-354.
[9] I. Jung, E. Ko, and C. Li, Embry truncated complex moment problem, submitted.
[10] I. Jung, E. Ko, C. Li, and S. Park, Embry truncated complex moment problem, Linear algebra and Appl., 375(2003), 95-114.
[11] C. Li, A note on singular quartic moment problem, Bull. of the Korean Math. Soc., 37(1)(2000), 91-102.
[12] Wolfram Research, Inc. Mathematica, Version 4.0, Wolfram Research Inc., Champaign, IL, 1996.

