KYUNGPOOK Math. J. 45(2005), 241-247

Truncated Complex Moment Problem with Data in a Circle

SANG HUN LEE AND JUNG HUI SIM

Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea e-mail: sanghlee@knu.ac.kr

ABSTRACT. Let $\gamma \equiv \{\gamma_{ij}\}$ $(0 \leq i+j \leq 2n)$ be a collection of complex numbers with $\gamma_{00} > 0$ and $\gamma_{ji} = \bar{\gamma}_{ij}$. The truncated complex moment problem for γ entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that $\gamma_{ij} = \int \bar{z}^i z^j d\mu(z)$ $(0 \leq i+j \leq 2n)$. We solve this truncated moment problem with data in a circle and discuss the behavior of data in an extended moment matrix.

1. Introduction and preliminaries

Given a doubly indexed finite sequence of complex numbers

 γ : γ_{00} , γ_{01} , γ_{10} , γ_{02} , γ_{11} , γ_{20} , \cdots , $\gamma_{0,2n}$, $\gamma_{1,2n-1}$, \cdots , $\gamma_{2n-1,1}$, $\gamma_{2n,0}$

with $\gamma_{00} > 0$ and $\gamma_{ji} = \bar{\gamma}_{ij}$, the truncated complex moment problem entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that

$$\gamma_{ij} = \int \bar{z}^i z^j d\mu \quad (0 \le i + j \le 2n);$$

 μ is called a representing measure for γ , and γ is called a truncated moment sequence. This truncated complex moment problem has been well-developed in several articles ([4], [5], [6], [7], [8], [10], [9]). Also, given a closed subset $K \subset \mathbb{C}$ and a doubly indexed infinite sequence of complex numbers $\gamma = {\gamma_{ij}}_{i,j=0}^{\infty}$:

$$\gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}, \cdots, \gamma_{0,2n}, \gamma_{1,2n-1}, \cdots, \gamma_{2n-1,1}, \gamma_{2n,0}, \cdots$$

with $\gamma_{00} > 0$ and $\gamma_{ji} = \bar{\gamma}_{ij}$, the (full) complex moment problem entails finding a positive Borel measure μ such that

$$\gamma_{ij} = \int \bar{z}^i z^j d\mu \quad (i, j \ge 0)$$

and supp $\mu \subset K$ (cf. [2]). In [4] and [5], one studied the truncated complex moment problem based on positivity and extension properties of the associated moment

Key words and phrases: truncated complex moment problem, moment matrix, representing measure.

Received March 4, 2004, and, in revised form, May 24, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 44A60.

matrix M(n) which is defined below. For $n \ge 1$, let m = m(n) := (n+1)(n+2)/2. For $A \in \mathcal{M}_m(\mathbb{C})$ (the set of $m \times m$ complex matrices), we denote the successive rows and columns according to the following lexicographic-functional ordering

$$\underbrace{1}_{(1)},\underbrace{Z,\bar{Z}}_{(2)},\underbrace{Z^2,\bar{Z}Z,\bar{Z}^2}_{(3)},\underbrace{Z^3,\bar{Z}Z^2,\bar{Z}^2Z,\bar{Z}^3}_{(4)},\cdots,\underbrace{Z^n,\cdots,\bar{Z}^n}_{(n+1)}.$$

In particular, rows or columns indexed by $1, Z, \dots, Z^n$ are said to be *analytic*. For $0 \leq i+j \leq n, 0 \leq l+k \leq n$, we denote the entry in row $\overline{Z}^l Z^k$, column $\overline{Z}^i Z^j$ by $A_{(l,k)(i,j)}$. We define $M(n) := M(n)(\gamma) \in \mathcal{M}_{m(n)}(\mathbb{C})$ as follows: for $0 \leq k+l \leq n$, $0 \leq i+j \leq n$, the entry in row $\overline{Z}^k Z^l$ and column $\overline{Z}^i Z^j$ is $M(n)_{(k,l)(i,j)} = \gamma_{l+i,j+k}$.

For example, if n = 1, the quadratic moment matrix for

$$\gamma$$
: γ_{00} , γ_{01} , γ_{10} , γ_{02} , γ_{11} , γ_{20}

corresponds to

$$M(1) = \begin{pmatrix} \gamma_{00} & \gamma_{01} & \gamma_{10} \\ \gamma_{10} & \gamma_{11} & \gamma_{20} \\ \gamma_{01} & \gamma_{02} & \gamma_{11} \end{pmatrix},$$

and if n = 2, the quartic moment matrix for

 γ : γ_{00} , γ_{01} , γ_{10} , γ_{02} , γ_{11} , γ_{20} , γ_{03} , γ_{12} , γ_{21} , γ_{30} , γ_{04} , γ_{13} , γ_{22} , γ_{31} , γ_{40} corresponds to

$$M(2) = \begin{pmatrix} \gamma_{00} & \gamma_{01} & \gamma_{10} & \gamma_{02} & \gamma_{11} & \gamma_{20} \\ \gamma_{10} & \gamma_{11} & \gamma_{20} & \gamma_{12} & \gamma_{21} & \gamma_{30} \\ \gamma_{01} & \gamma_{02} & \gamma_{11} & \gamma_{03} & \gamma_{12} & \gamma_{21} \\ \gamma_{20} & \gamma_{21} & \gamma_{30} & \gamma_{22} & \gamma_{31} & \gamma_{40} \\ \gamma_{11} & \gamma_{12} & \gamma_{21} & \gamma_{13} & \gamma_{22} & \gamma_{31} \\ \gamma_{02} & \gamma_{03} & \gamma_{12} & \gamma_{04} & \gamma_{13} & \gamma_{22} \end{pmatrix}$$

In the recent works, one discussed moment problem concentrated on support of the given moment measure. As a different approach we discuss moment problem concentrated on a given data. In this note we consider moment problem with a data on a circle.

2. Some known properties

In this section we recall some known properties from [3] and [4], which are used frequently in this note.

(P₁). Let A_k be the compression of A to the first (k+1) rows and columns, i.e.,

$$A = \left(\begin{array}{cc} A_k & * \\ * & * \end{array}\right),$$

and let $\Delta_k := \det(A_k)$. Assume that $A \ge 0$ and that $\Delta_k = 0$ for some k. Then, $\Delta_l = 0$ for all $l \ge k$. (P₂). If $M(1) \ge 0$ and rank M(1) = 1, then $\gamma_{00} \cdot \delta_{\gamma_{01}/\gamma_{00}}$ is the unique representing measure of γ .

For $k, l \in \mathbb{Z}_+$, let $A \in \mathcal{M}_k(\mathbb{C}), A = A^*, B \in M_{k,l}(\mathbb{C}), C = C^* \in M_l(\mathbb{C})$; we refer to any matrix of the form

$$\widetilde{A} \equiv \left(\begin{array}{cc} A & B \\ B^* & C \end{array} \right)$$

as an extension of ${\cal A}$.

- (**P**₃). Let A, B, C and \widetilde{A} be as above, let V_1, V_2, \dots, V_k be the columns of A, let V_{k+1}, \dots, V_{k+l} be the columns of B, and let $\widetilde{V}_1, \widetilde{V}_2, \dots, \widetilde{V}_k, \widetilde{V}_{k+1}, \widetilde{V}_{k+l}$ be the columns of \widetilde{A} . Assume that $\widetilde{A} \ge 0$.
 - i) If there exist scalars a_1, a_2, \dots, a_k such that $\sum_{i=1}^k a_i V_i = 0$, then $\sum_{i=1}^k a_i \widetilde{V}_i = 0$.
 - ii) If \widetilde{A} is a flat extension of A and $\sum_{i=1}^{k+l} a_i V_i = 0$, then $\sum_{i=1}^{k+l} a_i \widetilde{V}_i = 0$.
- (P₄). If γ is of flat data type and $M(n) = M(n)(\gamma) \ge 0$, then M(n) also admits a unique flat extension $M(\infty) \ge 0$, where $M(\infty)$ is a finite-rank positive infinite moment matrix.

3. Main results

We now begin the main section with some lemmas.

Lemma 3.1. Let M(1) be a positive moment matrix. Given

$$\gamma = \gamma^{(2)} : \gamma_{00}, \ \gamma_{01}, \ \gamma_{10}, \ \gamma_{02}, \ \gamma_{11}, \ \gamma_{20}$$

with $\gamma_{00} > 0$ and $\gamma_{ji} = \bar{\gamma}_{ij}$, if $\{\gamma_{ij}\}_{0 \le i+j \le 2}$ lies in $\rho \mathbb{T} := \{\rho z : |z| = 1\}$ $(\rho > 0)$, then

- (i) there exists the unique representing measure $\mu = \rho \cdot \delta_{\gamma_{01}/\rho}$ and
- (ii) $\gamma_{01}^2 = \rho \cdot \gamma_{02}$.

Proof. Since $\gamma_{00} > 0$ and $\gamma_{00} \in \rho \mathbb{T}$, we have $\gamma_{00} = \rho$. For brevity, we write $\gamma_{01} = u$, $\gamma_{02} = v$, $\gamma_{11} = r$. Then we have

$$M(1) = \left(\begin{array}{ccc} \rho & u & \overline{u} \\ \overline{u} & r & \overline{v} \\ u & v & r \end{array}\right).$$

 $A = \left(\begin{array}{cc} \rho & u \\ \overline{u} & r \end{array}\right).$

Let

Since M(1) is self adjoint, obviously r is a real number. Since M(1) is a moment matrix, $r \ge 0$ and so $r = \rho$. Since $M(1) \ge 0$ and $\det(A) = \rho^2 - |u|^2 = 0$, by (P₁), det M(1) = 0. On the other hand, by some computation, we have

$$M(1) \stackrel{R}{\sim} \left(\begin{array}{ccc} \rho & u & \overline{u} \\ \rho^2 & \rho u & u\overline{v} \\ \rho^2 & \overline{u}v & \overline{u}\rho \end{array} \right) \stackrel{R}{\sim} \left(\begin{array}{ccc} \rho & u & \overline{u} \\ 0 & 0 & u\overline{v} - \overline{u}\rho \\ 0 & \overline{u}v - u\rho & 0 \end{array} \right),$$

where $\stackrel{R}{\sim}$ is row equivalent. Hence

$$\det M(1) = 0 = -\rho |\overline{u}v - u\rho|^2.$$

So $\overline{u}v = u\rho$, and so

$$\gamma_{02} = v = \frac{u^2 \rho}{|u|^2} = \frac{u^2}{\rho}.$$

Since $M(1) \ge 0$ and rank M(1) = 1, by (P₂), there exist the unique representing measure $\mu = \rho \cdot \delta_{\gamma_{01}/\rho}$ of γ .

Lemma 3.2. Let

 $\gamma = \gamma^{(2n)} : \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{02}, \gamma_{11}, \gamma_{20}, \cdots, \gamma_{0,2n}, \gamma_{1,2n-1}, \cdots, \gamma_{2n-1,1}, \gamma_{2n,0}$ be a data of complex numbers. Let M(n) be the positive moment matrix corresponding to γ . If the data $\gamma^{(2n)}$ lies in $\rho \mathbb{T}$, then

- (i) the extended infinite moment matrix $M(\infty)$ satisfies rank $M(\infty) = \operatorname{rank} M(n) = 1$,
- (ii) there exists the unique associated representing measure μ̃ = ρ · δ_{γ01/ρ}(= μ) for M(∞),
- (iii) $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ satisfies $\gamma_{ij} = \rho^{1+i-j}\gamma_{01}^{j-i}$, and
- (iv) the flat extended moment sequence $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ is also in $\rho \mathbb{T}$.

Proof. Since M(n) is a flat extension of M(1), according to (P₃) and (P₄), the representing measure for M(n) also is $\mu = \rho \delta_{\gamma_{01}/\rho}$. Since

$$\gamma_{ij} = \int \bar{z}^i z^j \, d\mu \qquad (0 \le i+j \le 2n),$$

we have

$$\gamma_{00} = \int \rho \ d\delta_{\gamma_{01}/\rho} = \rho \int d\delta_{\gamma_{01}/\rho} = \rho.$$

Hence $\rho = \gamma_{00} = \rho_k$, and $u_k = \gamma_{01}/\rho$. Thus $\mu_k = \mu$ for all $k = 1, 2, \cdots$. That is, $M(\infty)$ has a unique representing measure $\mu = \rho \delta_{\gamma_{01}/\rho}$. Moreover, since

$$\gamma_{ij} = \int \bar{z}^i z^j \, d\mu_k = \int \bar{z}^i z^j \rho d\delta_{\gamma_{01}/\rho}$$
$$= \rho \cdot \left(\frac{\bar{\gamma}_{01}}{\rho}\right)^i \left(\frac{\gamma_{01}}{\rho}\right)^j = \rho^{1-i-j} \cdot \bar{\gamma}^i_{01} \gamma^j_{01}$$

and $\bar{\gamma}_{01} = \rho^2 \gamma_{01}^{-1}$ (*indeed*, $\gamma_{01} \bar{\gamma}_{01} = \rho^2$), we have

$$\gamma_{ij} = \rho^{1-i-j} \cdot \rho^{2i} \gamma_{01}^{-i} \cdot \gamma_{01}^{j} = \rho^{1+i-j} \gamma_{01}^{j-i}.$$

Finally, since

$$|\gamma_{ij}| = \left| \rho^{1+i-j} \gamma_{01}^{j-i} \right| = \rho,$$

 $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ lies in $\rho \mathbb{T}$.

Recall that if $\gamma = {\gamma_{ij}}_{0 \le i+j \le 2}$ is in $\rho \mathbb{T}$, then by Lemma 3.2 the infinite moment matrix $M(\infty)$ is well-constructed.

Theorem 3.3. Suppose M(n) is a positive moment matrix. Let $\gamma = {\gamma_{ij}}_{0 \le i+j \le 2n}$ be a given data lies in $\rho \mathbb{T}$ ($\rho > 0$) and let $\tilde{\gamma} = {\gamma_{ij}}_{i,j=0}^{\infty}$ be the flat extension data corresponding to $M(\infty)$. Then,

i) if γ₀₁ = ρ ⋅ e^{i2π n/m} with (m, n) = 1, then γ̃ is exactly the set of vertices of a regular m-polygon inscribed in ρT,

ii) if
$$\gamma_{01} = \rho \cdot e^{i2\pi\theta}$$
, where θ is an irrational number, then $\tilde{\gamma}$ is dense in $\rho \mathbb{T}$.

Proof. i) Since $\gamma = \{\gamma_{ij}\}_{0 \le i+j \le 2n}$ lies in $\rho \mathbb{T}$, by Lemma 3.2 the flat extended moment sequences $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ lies also in $\rho \mathbb{T}$ and the associated representing measure is $\tilde{\mu} = \rho \cdot \delta_{\gamma_{01}/\rho}$. Hence the extended flat data $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ satisfies

$$\begin{aligned} \gamma_{ij} &= \rho^{1+i-j} \gamma_{01}^{j-i} \quad (\text{since } |\gamma_{01}| = \rho) \\ &= \rho^{1+i-j} (\rho \cdot e^{i2\pi \frac{n}{m}})^{j-i} \\ &= \rho \cdot (e^{i2\pi \frac{n}{m}})^{j-i}. \end{aligned}$$

Therefore we have

$$\{\gamma_{ij}\}_{i,j=0}^{\infty} = \{\rho \cdot (e^{i2\pi \frac{n}{m}})^k \mid k \in \mathbb{Z} \}$$

= $\{\rho \cdot (e^{i\frac{2\pi}{m}})^{nk} \mid k = 0, 1, \cdots, m-1 \}.$

Since

$$\frac{2\pi}{m}n(k+1) - \frac{2\pi}{m}nk = \frac{2\pi}{m}n,$$

it is independent on k and the number of vertices is m. So, $\tilde{\gamma} = \{\gamma_{ij}\}_{i,j=0}^{\infty}$ is exactly the set of vertices of a regular m-polygon inscribed in $\rho \mathbb{T}$.

ii) Since

$$\{\gamma_{ij}\}_{i,j=0}^{\infty} = \{\rho \cdot e^{i2\pi\theta k} \mid k \in \mathbb{Z}\}$$

and θ is an irrational number, it is obvious that $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ is dense in $\rho \mathbb{T}$. \Box

The following corollary comes immediately from Theorem 3.3.

Corollary 3.4. Suppose M(n) is a positive moment matrix. Let $\gamma = {\gamma_{ij}}_{0 \le i+j \le 2n}$ is exactly the set Γ_k of vertices of a regular k-polygon inscribed in $\rho \mathbb{T}$. Then $\tilde{\gamma} =$

 $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ is the same set Γ_k .

Remark 3.5. We can consider an arbitrary circle $\partial D(z_0, \rho) := \rho \mathbb{T} + z_0$ instead of $\rho \mathbb{T}$ in Section 3. But the extended data $\tilde{\gamma} = \{\gamma_{ij}\}_{i,j=0}^{\infty}$ can not be contained in $\partial D(z_0, \rho)$ when $\gamma = \{\gamma_{ij}\}_{0 \le i+j \le 2n}$ is in $\partial D(z_0, \rho)$. We can give a counter examples for this concept. Consider $\gamma_{00} = 1$, $\gamma_{01} = 0$, $\gamma_{02} = 0$, $\gamma_{11} = 1$. Then $\gamma = \{\gamma_{ij}\}_{0 \le i+j \le 2} \subset$ $\partial D(1/2, 1/2)$. By some computations, we may obtain

$$M(2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & i & -i & \sqrt{2} \\ 0 & 0 & 1 & \sqrt{2} & i & -i \\ 0 & -i & \sqrt{2} & 3 & -1 + \sqrt{2}i & -2\sqrt{2}i \\ 1 & i & -i & -1 - \sqrt{2}i & 3 & -1 + \sqrt{2}i \\ 0 & \sqrt{2} & i & 2\sqrt{2}i & -1 - \sqrt{2}i & 3 \end{pmatrix}$$

with rank $M(2) = \operatorname{rank} M(1) = 3$, and so M(2) is a flat extension of M(1). Obviously we have that $\{\gamma_{ij}\}_{0 \le i+j \le 4} \nsubseteq \partial D(1/2, 1/2)$. Hence $\tilde{\gamma} = \{\gamma_{ij}\}_{i,j=0}^{\infty}$ can not be contained in $\partial D(z_0, \rho)$ (See [8] for more examples).

Remark 3.6. Like the approach in this section, when a data $\gamma = \{\gamma_{ij}\}_{0 \le i+j \le 2n}$ is in $D(0,\rho) := \{z \in \mathbb{C} : |z| \le 1\}$, does the flat extension infinite data $\{\gamma_{ij}\}_{i,j=0}^{\infty}$ lie in $D(0,\rho)$? The answer is negative (indeed, consider a data $\gamma : 1, 0, 0, 0, 1, 0$, i.e.,

$$M(1) = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right).$$

Then matrix M(2) in Remark 3.5 is a flat extension of M(1), but the data $\{\gamma_{ij}\}_{0 \le i+j \le 4}$ doesn't lie in D(0, 1).)

Acknowledgement. The first author was supported by Kyungpook National University Research Fund, 2002. The second author was supported by Korea Research Foundation Grant (KRF-2002-070-C00006).

References

- [1] N. Akhiezer, The Classical Moment Problem, Hafner Publ. Co., New York, 1965.
- [2] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math., 59(1975), 317-325.
- [3] R. Curto and Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations Operator Theory, 18(1994), 369-426.
- [4] R. Curto and Fialkow, Solution of the truncated complex moment problems for flat data, Memoirs Amer. Math. Soc., 568(1996).

- [5] R. Curto and Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc., 648(1998).
- [6] R. Curto and Fialkow, The truncated complex K-moment problem, Trans. Amer. Math. Soc., 352(2000), 2825-2855.
- [7] R. Curto and Fialkow, *The quadratic moment problem for the unit disc and unit circle*, Integral Equations Operator Theory, **38**(2000), 377-409.
- [8] R. Curto and Fialkow, Solution of the singular quartic moment problem, J. Operator Theory, 48(2002), 315-354.
- [9] I. Jung, E. Ko, and C. Li, *Embry truncated complex moment problem*, submitted.
- [10] I. Jung, E. Ko, C. Li, and S. Park, *Embry truncated complex moment problem*, Linear algebra and Appl., 375(2003), 95-114.
- C. Li, A note on singular quartic moment problem, Bull. of the Korean Math. Soc., 37(1)(2000), 91-102.
- [12] Wolfram Research, Inc. Mathematica, Version 4.0, Wolfram Research Inc., Champaign, IL, 1996.