• Title/Summary/Keyword: molten solder

Search Result 34, Processing Time 0.024 seconds

Wettability Evaluation by Wetting Balance Test and Wetting Characteristics of Solders (웨팅밸런스법을 통한 젖음성 평가와 솔더의 젖음 특성)

  • Jeon, Wook Sang;Rajendran, Sri Harini;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • Wettability is an important factor to decide solderability of solder, flux, other soldering-related materials and soldering conditions. The wettability also affects the reliability of solder joint. Wetting balance test is a good method for quantitatively measuring wettability between solder and substrate. The wetting balance test is easy to reproduce the wetting experiment and to measure the wetting time and force. And this test provides wetting curve to calculate the surface tension of the molten solder. Development of new solder has been continued in accordance with various and harsh environment in the electronics industry. In this paper, the principle of wetting balance test and recent research issues including nano-composite solder are explained.

Study on the solution for the overflow of molten solder during the soldering of fuse cap through CFD analysis (전산유체해석을 통한 퓨즈캡 솔더링 시의 용융솔더 넘침 문제 해결방안 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.31-36
    • /
    • 2018
  • Fuses are used to protect electric circuits or devices from excess current. Glass-tube fuses are typically used, but problems have arisen due to the mandated switch from conventional solder to lead-free solder. This study used CFD to simulate the phenomenon of molten solder being poured out of a fuse during the soldering process for a fuse cap and fuse element. In addition, a method is proposed to prevent solder from overflowing, and its effectiveness was verified based on the analysis results. The results show that a sufficient increase of the temperature inside the glass tube before soldering and gravity can help to prevent the solder from overflowing.

INTERCONNECTION TECHNOLOGY IN ELECTRONIC PACKAGING AND ASSEMBLY

  • Wang, Chunqing;Li, Mingyu;Tian, Yanhong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.439-449
    • /
    • 2002
  • This paper reviews our recent research works on the interconnection technologies in electronic packaging and assembly. At the aspect of advanced joining methods, laser-ultrasonic fluxless soldering technology was proposed. The characteristic of this technology is that the oxide film was removed through the vibration excitated by high frequency laser change in the molten solder droplet. Application researches of laser soldering technology on solder bumping of BGA packages were carried out. Furthermore, interfacial reaction between SnPb eutectic solder and Au/Ni/Cu pad during laser reflow was analyzed. At the aspect of soldered joints' reliability, the system for predicting and analyzing SMT solder joint shape and reliability(PSAR) has been designed. Optimization design method of soldered joints' structure was brought forward after the investigation of fatigue failure of RC chip devices and BGA packages under temperature cyclic conditions with FEM analysis and experimental study. At the aspect of solder alloy design, alloy design method based on quantum was proposed. The macroproperties such as melting point, wettability and strength were described by the electron parameters. In this way, a great deal of the experimental investigations was replaced, so as to realize the design and research of any kinds of solder alloys with low cost and high efficiency.

  • PDF

Effects of Wicking on Solder Joint Profile in Gullwing Lead (워킹이 Gullwing 리드의 솔더 접합부 형상에 미치는 영향)

  • 최동필;유중돈;이태수;최상균
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.117-124
    • /
    • 1998
  • During the reflow process in SMT, the molten solder has been observed to move upward and solidify along the gullwing lead, which is called the wicking phenomenon. In this paper, possible causes of the wicking are investigated, and its effects on the solder joint profile are quantitatively estimated by introducing the wicking constant. The free energy reduction by intermetallic formation between the copper and tin seems to be the major source of wicking action. The joint profiles of the gullwing lead are calculated using the previous finite element formulation incorporated with the wicking constant. The calculated results show reasonably good agreements with the experimental data when the wicking effects are considered.

  • PDF

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF

Reflectivity of Sn Solder for LED Lead Frame

  • Xu, Zengfeng;Gi, Se-Ho;Park, Sang-Yun;Kim, Won-Jung;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.184-185
    • /
    • 2011
  • In this study, in order to obtain a high reflectivity for the LED lead frame, tin dip coating and tin plating were conducted respectively, and wettability of LED lead frame with tin solder also was tested by wetting balance tester. A Cu sheet was plated in Cu brighten electroplating bath and followed by immersion in a Sn electro-less plating bath [1]. On the other hand, in the dip coating process, a Cu sheet was dipped into molten tin. In the progress of wetting test, besides wetting balance curve, the maximum measured force($F_m$), the maximum withdrawal force($F_w$) and zero-cross time($t_0$) were obtained in various temperatures. With the maximum withdrawal force, the surface tension was calculated at different temperatures. The Cu sheet plated with bright Cu and Sn show a silver bright property while that of Cu dipped with Sn possessed a high reflectance density of 1.34GAM at $270^{\circ}C$.

  • PDF

Interfacial Microstructure and Mechanical Property of Au Stud Bump Joined by Flip Chip Bonding with Sn-3.5Ag Solder (Au 스터드 범프와 Sn-3.5Ag 솔더범프로 플립칩 본딩된 접합부의 미세조직 및 기계적 특성)

  • Lee, Young-Kyu;Ko, Yong-Ho;Yoo, Se-Hoon;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.65-70
    • /
    • 2011
  • The effect of flip chip bonding parameters on formation of intermetallic compounds (IMCs) between Au stud bumps and Sn-3.5Ag solder was investigated. In this study, flip chip bonding temperature was performed at $260^{\circ}C$ and $300^{\circ}C$ with various bonding times of 5, 10, and 20 sec. AuSn, $AuSn_2$ and $AuSn_4$ IMCs were formed at the interface of joints and (Au, Cu)$_6Sn_5$ IMC was observed near Cu pad side in the joint. At bonding temperature of $260^{\circ}C$, $AuSn_4$ IMC was dominant in the joint compared to other Au-Sn IMCs as bonding time increased. At bonding temperature of $300^{\circ}C$, $AuSn_2$ IMC clusters, which were surrounded by $AuSn_4$ IMC, were observed in the solder joint due to fast diffusivity of Au to molten solder with increased bonding temperature. Bond strength of Au stud bump joined with Sn-3.5Ag solder was about 23 gf/bump and fracture mode of the joint was intergranular fracture between $AuSn_2$ and $AuSn_4$ IMCs regardless bonding conditions.