• Title/Summary/Keyword: molecules

Search Result 7,248, Processing Time 0.032 seconds

A Molecular Dynamics Study of the Interaction of Oxygen Molecules with a Water Droplet

  • Ambrosia, Matthew Stanley
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.901-906
    • /
    • 2018
  • Water and oxygen are two of the most essential molecules for many species on earth. Their unique properties have been studied in many areas of science. In this study, the interaction of water and oxygen molecules was observed at the nano-scale. Using molecular dynamics, a water droplet with 30,968 water molecules was simulated. Then, 501 oxygen molecules were introduced into the domain. A few oxygen molecules were attracted to the surface of the water droplet due to van der Waals forces, and some oxygen molecules actually entered the water droplet. These interactions were visualized and quantified at four temperatures ranging from 280 to 370 K. It was found that at high temperatures, there was a higher possibility of the oxygen molecules penetrating the water droplet than that at lower temperatures. However, at lower temperatures, oxygen molecules were more likely to be found interacting at the surface of the water droplet than at high temperatures.

Characterization and function of human Ly-6/uPAR molecules

  • Kong, Hyun Kyung;Park, Jong Hoon
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.595-603
    • /
    • 2012
  • Human Ly-6/uPAR molecules are a superfamily composed of two subfamilies; one is the membrane bound proteins with a GPI-anchor and the other are secreted proteins without the GPI-anchor. Ly-6/uPAR molecules have remarkable amino acid homology through a distinctive 8-10 cysteine-rich domain that is associated predominantly with O-linked glycans. These molecules are encoded by multiple tightly linked genes located on Chr. 8q23, and have a conserved genomic organization. Ly-6/uPAR molecules have an interesting expression pattern during hematopoiesis and on specific tumors indicating that Ly-6/uPAR molecules are associated with development of the immune system and carcinogenesis. Thus, Ly-6/uPAR molecules are useful antigens for diagnostic and therapeutic targets. This review summarizes our understanding of human Ly-6/uPAR molecules with regard to molecular structure as well as what is known about their function in normal and malignant tissues and suggest Ly-6/uPAR molecules as target antigens for cancer immunotherapy.

Detection of Viroid-like RNA Molecules in Korean Peonies (Paeonia lactiflora) (한국산 작약(Paeonia lactiflora)으로부터 바이로이드 유사 RNA 분자의 검출)

  • ;H. L. S nger
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 1997
  • Viroid-like RNA molecules were detected from the low molecular weight RNAs isolated from the Korean peonies which showed typical viroid symptoms of epinasty and dwarfing. Low molecular weight RNAs including viroid RNA molecules were purified by the Qiagen anion exchange minicolumns. Viroid-like RNA molecules showed a single viroid specific band in the native polyacrylamide gel. They were separated into two bands in the denaturing gel conditions. The band of circular form of viroid-like RNAs was crossed over the horizontal band of the linear form of viroid-like RNA molecules in 0~8 M urea gradient gel under the denaturing conditions of 37$^{\circ}C$. The two circular forms of viroid-like RNA molecules were detected in the reverse polyacrylamide gel electrophoresis. The viroid-like RNA molecules purified from the peonies were supposed to be unidentified viroid RNA molecules.

  • PDF

MOLECULAR SCALE MECHANISM ON EVAPORATION AND REMOVAL PROCESS OF ADHERENT MOLECULES ON SURFACE BY BURNT GAS

  • Yang, Y.J.;Lee, C.W.;Kadosaka, O.;Shibahara, M.;Katsuki, M.;Kim, S.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The interaction between adherent molecules and gas molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantity and gas molecular collisions because the industrial oil has too complex structures of fatty acid. Effects of adherent quantity, gas temperature, surface temperature and adhesion strength for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on the surface temperature shown in the experimental results.

Release of Oxygen from a Nano-sized Water Droplet Observed using Molecular Dynamics

  • Lee, Chang-Han;Ambrosia, Matthew Stanley
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2016
  • Dissolved oxygen is necessary for many biological processes as well as many industrial practices. Dissolved oxygen released from water in dissolved air flotation (DAF) systems can be have many different applications. However, DAF systems are very costly to operate. To develop more efficient DAF systems, a deeper understanding of the process of oxygen being released from water is required. In this study, molecular dynamics (MD) simulations were used to simulate 100 oxygen molecules surrounded by 31002 water molecules at temperatures ranging from $0^{\circ}C$ to $100^{\circ}C$. Simulations were carried out for 10 ns, during which, in most cases, all the oxygen molecules were released from the water droplet. With MD simulations, visualization of the molecules escaping the water droplet was possible, which aided the understanding of the interactions between molecules at the nano-scale. The results showed that as the oxygen molecules moved near the edge of the water droplet that the oxygen molecules hesitated before escaping the water droplet or returned to the interior of the water droplet. This was because of the attractive forces between the water and oxygen molecules. Moreover, after most of the oxygen molecules were released from the droplet, some were found to return to the droplet's edge or even the interior of the droplet. It was also confirmed that oxygen molecules were released at a faster rate at higher temperatures.

Measurement of the Displacement Currents Induced by the Monolayers on the Water surface of KUHN Type LB Apparatus (KUHN형 LB장치의 수면상에 전개된 단분자막의 변위전류 측정)

  • 박태곤;송경호;박근호;권명수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.83-86
    • /
    • 1994
  • On this paper, the structural changes of molecules on the water surface were monitored by the measuring system of displacement currents. The measuring system was constructed at home-made Kuhn type LB(Langmuir -Blodgett) deposition apparatus. Solutions of 4-octyl -4\\`- (5-car boxy$.$ -pentamethyleneoxy) azobenzene molecules (8A5H) and stearic acid(C$\_$18/) were spreaded at the air-water interface respectively, and the currents inducted by the dynamic behavior of molecules were measured when the molecules were the molecules were pressed by barrier. From C$\_$18/ mo1ecules two distinct peaks of displacement currents were obtained, which show that the orientations of mo1ecules were charged largely at these Points. The reversibility of displacement currents by compression and expansion was obtained from 8A5H molecules, which shows the compressed molecules which shows the compressed molecules have a tendency to disperse after the compression. But it was not obtained from C$\_$18/ molecules which means that this molecules disperse not easily by decreasing the pressure of the barrier.

  • PDF

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

Molecular Dynamics Study for Improving the Adhesion of Paint (도료의 부착성 개선을 위한 분자동역학적 연구)

  • Yang, Young-Joon;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.932-938
    • /
    • 2007
  • The interaction between adherent molecules and gas molecules was modeled in molecular scale and simulated by the molecular dynamics method in order to understand the evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantify and gas molecular collisions because the industrial oil has too complex structures of fatty acid. The effects of adherent quantify, gas temperature and surface temperature for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on surface temperature shown in the experimental results.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.