• Title/Summary/Keyword: molecularly imprinted polymer

Search Result 30, Processing Time 0.022 seconds

Molecularly Imprinted Polymers Having Amidine and Imidazole Functional Groups As an Enzyme-Mimetic Catalyst for Ester Hydrolysis

  • Chen, Wen;Han, Dong-Keun;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.122-126
    • /
    • 2002
  • A molecularly imprinted polymer (MIP) having both amidine and imidazole functional groups in the active site has been prepared using p-nitrophenyl phosphate as a transition state analogue (TSA). The imprinted polymer MIP with amidine and imidazole found to have the highest hydrolysis activity compared with other MIPs with either amidine or imidazole groups only. It is postulated a cooperative effect between amidine and imidazole in the hydrolysis of p-nitrophenyl methyl carbonate (NPMC) as a substrate when both groups were arranged in proximity by molecular imprinting. The rate enhancement of the hydrolysis by MIP was 60 folds over the uncatalyzed solution reaction and two folds compared with the control non-imprinted polymer CPI having both functional groups. The enzyme-mimetic catalytic hydrolysis of p-nitrophenyl acetate by MIP was evaluated in buffer at pH 7.0 with $K_{m}$ of 1.06 mM and $k_{cat}$ of 0.137 $h^{-1}$ . . .

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

A Kinetic Consideration on the Selective Adsorption and Molecular Recognition by Molecularly Imprinted Polymer

  • Li, Wuke;Li, Songjun;Luo, Gang;Ding, Kerong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1346-1352
    • /
    • 2007
  • This article presents an original work on kinetically studying the selective adsorption and recognition by molecularly imprinted polymer (MIP). With S-naproxen as template, the imprinted polymer was prepared. The result indicates that the prepared polymer shows a more complicated sorption toward S-naproxen than toward its enantiomer R-naproxen. The rate constant in the case of template appears to be a variable. There are also significant deviations from the idealized Langmuir model. Related information indicates that these, in logic, can be a result of biomimic structural and functional complements between imprint and the template, which makes the polymer capable of selectively recognizing the imprint species.

Molecularly Imprinted Monolithic Stationary Phases for Liquid Chromatographic Separation of Tryptophan and N-CBZ-Phenylalanine Enantiomers

  • Yan, Hong-Yuan;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2006
  • Monolithic molecularly imprinted columns were designed and prepared by an in-situ thermal-initiated copolymerization technique for rapid separation of tryptophan and N- CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.

Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase

  • Zhang, Yan;Lei, Jiandu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1839-1844
    • /
    • 2013
  • Molecularly imprinted microsphere for chloramphenicol (CAP) with high adsorption capacity and excellent selectivity is prepared by aqueous suspension polymerization, in which chloramphenicol is used as template molecule and ethyl acetate as porogen. The CAP-imprinted microspheres are used as high performance liquid chromatography (HPLC) stationary phase and packed into stainless steel column ($150mm{\times}4.6mm$ i.d.) for selective separation of chloramphenicol. HPLC analysis suggests that chloramphenicol can be distinguished from not only its structural analogs but also other broad-spectrum antibiotic such as erythromycin and tetracycline. In addition, the binding experiments of CAP-imprinted microspheres are carried out in ethanol/water (1:4, V:V), the results indicate that the maximum apparent static binding capacity of molecularly imprinted microspheres is up to 66.64 mg $g^{-1}$ according to scatchard model.

Evaluation of New Selective Molecularly Imprinted Polymers for the Extraction of Resveratrol from Polygonum Cuspidatum

  • Cao Hui;Xiao Jian Bo;Xu Ming
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.324-330
    • /
    • 2006
  • Four different molecularly imprinted polymers (MIPs) were prepared using resveratrol as the template, methacrylic acid (MAA) or acrylamide (AA) as functional monomers, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and thermo- or photo-induced polymerization. The ability of the different polymers to rebind selectively not only the template but also other phenols was evaluated. In parallel, the influence of the different templates and functional monomers used during polymer syntheses on the performance of the obtained MIPs was also studied through different rebinding experiments. The binding ability and selectivity of the polymer were studied by static balance method and Scatchard analysis. It was concluded that AA-based polymer by photo-induced polymerization presents the best properties to be used as a selective absorbent for the extraction of resveratrol.

Molecularly Imprinted Polymers for Solid-Phase Extraction of Sarcosine as Prostate Cancer Biomarker from Human Urine

  • Hashemi-Moghaddam, Hamid;Rahimian, Majid;Niromand, Bahman
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2330-2334
    • /
    • 2013
  • A highly selective molecularly imprinted polymer (MIP) for sarcosine, a cancer marker, was prepared and its use as solid-phase extraction (SPE) sorbent material was demonstrated. The MIP was prepared by a very simple procedure using methacrylic acid as functional monomer and a mixture acetonitrile/water (4/1, v/v) as porogen, overcoming in this way the problems usually related to the imprinting of biological polar compounds. The MIP was tested in batch experiments in order to evaluate its binding properties and then used as SPE sorbent for the selective clean-up and pre-concentration of sarcosine. The extraction protocol was successfully applied to the direct extraction of sarcosine from spiked human urine indicating that the MIP allowed sarcosine to be pre-concentrated while simultaneously interfering compounds were removed from the matrix.

Simultaneous extraction of organic and inorganic compounds using molecularly/ion imprinted polymer

  • Yelin Lee;Hyeyoung Jung;Soomi Park;Sunyoung Bae
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.295-305
    • /
    • 2024
  • 5-Hydroxymethyl-2-furaldehyde (5-HMF) is considered one of the main quality indexes of various food products. Its metabolism in humans can potentially lead to carcinogenic compounds. Metallic ions such as Zn, Mg, Mn, and Fe have been reported to enhance 5-HMF formation. Recently, studies on adsorbents that can extract specific organic and inorganic substances with one adsorbent have been conducted. However, simultaneous analysis of organic and inorganic materials typically requires distinct pre-treatment and analytical methods, which increase a lot of labor and cost. In this study, hybrid imprinted polymer (HIP) by mixing 5-HMF imprinted polymer (FIP) and zinc ion imprinted polymer (ZIIP) were generated to extract two analytes, Zn ion and 5-HMF, simultaneously. Physicochemical characterization of HIP was conducted by Fourier-transform infrared spectroscopy, scanning electron microscopy, and sorption tests. Extraction conditions including adsorbent mixing ratio, adsorbate mixing range, and equilibrium time were optimized. Freundlich adsorption model was as the best-fitting isotherm model to elucidate the adsorption mechanism. Affinity of Zn ion and 5-HMF on HIP was superior to non-HIP. In conclusion, HIP showed reasonable feasibility that could be used as an adsorbent to be used for simultaneous extraction of organic and inorganic compounds present in the sample.

Preparation of Molecularly Imprinted Poly(methacrylic acid) and Its HPLC Separation Characteristics of Retinoids (분자각인 Poly(methacrylic acid)의 제조 및 레티노이드 화합물의 HPLC 분리 특성)

  • 남기훈;권영돈;김덕준
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.710-717
    • /
    • 2002
  • Molecularly imprinted polymers were prepared in particle forms by crosslinking methacrylic acid (MAA)) using all trans-retinoic acid as a template. The HPLC column packed with the prepared molecular imprinted polymers showed high capability in separation of retinoid derivatives. The column capacity factor and selectivity increased with increasing MAA to template ratio when the incorporated template amount was fixed, as it statistically generated more binding sites between host molecules and template. Molecularly imprinted polymer particles prepared via an emulsion polymerization method were round-shaped and their sizes were more uniformly distributed, but their separation capability was inferior to those obtained by solution polymerization method. It was presumably because the loss of interaction strength between MAA and the template due to hydrogen bonding either between MAA and water or between template and water during the synthesis of molecularly imprinted polymers.