• Title/Summary/Keyword: molecular pathogenesis

Search Result 590, Processing Time 0.027 seconds

LSD1-S112A exacerbates the pathogenesis of CSE/LPS-induced chronic obstructive pulmonary disease in mice

  • Jeong, Jiyeong;Oh, Chaeyoon;Kim, Jiwon;Yoo, Chul-Gyu;Kim, Keun Il
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.522-527
    • /
    • 2021
  • Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood. This study aimed to investigate the role of Lsd1-S112A, a phosphorylation defective mutant, in the cigarette smoke extract/LPS-induced chronic obstructive pulmonary disease (COPD) model using Lsd1SA/SA mice and to explore the potential mechanism underpinning the development of COPD. We found that Lsd1SA/SA mice exhibited increased susceptibility to CSE/LPS-induced COPD, including high inflammatory cell influx into the bronchoalveolar lavage fluid and airspace enlargement. Additionally, the high gene expression associated with the inflammatory response and oxidative stress was observed in cells and mice containing Lsd1-S112A. Similar results were obtained from the mouse embryonic fibroblasts exposed to a PKCα inhibitor, Go6976. Thus, the lack of LSD1 phosphorylation exacerbates CSE/LPS-induced COPD by elevating inflammation and oxidative stress.

Cognitive dysfunctions in individuals with diabetes mellitus

  • Kim, Hye-Geum
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.183-191
    • /
    • 2019
  • Some patients with type 1 and type 2 diabetes mellitus (DM) present with cognitive dysfunctions. The pathophysiology underlying this complication is not well understood. Type 1 DM has been associated with a decrease in the speed of information processing, psychomotor efficiency, attention, mental flexibility, and visual perception. Longitudinal epidemiological studies of type 1 DM have indicated that chronic hyperglycemia and microvascular disease, rather than repeated severe hypoglycemia, are associated with the pathogenesis of DM-related cognitive dysfunction. However, severe hypoglycemic episodes may contribute to cognitive dysfunction in high-risk patients with DM. Type 2 DM has been associated with memory deficits, decreased psychomotor speed, and reduced frontal lobe/executive function. In type 2 DM, chronic hyperglycemia, long duration of DM, presence of vascular risk factors (e.g., hypertension and obesity), and microvascular and macrovascular complications are associated with the increased risk of developing cognitive dysfunction. The pathophysiology of cognitive dysfunction in individuals with DM include the following: (1) role of hyperglycemia, (2) role of vascular disease, (3) role of hypoglycemia, and (4) role of insulin resistance and amyloid. Recently, some investigators have proposed that type 3 DM is correlated to sporadic Alzheimer's disease. The molecular and biochemical consequences of insulin and insulin-like growth factor resistance in the brain compromise neuronal survival, energy production, gene expression, plasticity, and white matter integrity. If patients claim that their performance is worsening or if they ask about the effects of DM on functioning, screening and assessment are recommended.

Leptin stimulates IGF-1 transcription by activating AP-1 in human breast cancer cells

  • Min, Dong Yeong;Jung, Euitaek;Kim, Juhwan;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.385-390
    • /
    • 2019
  • Leptin, an adipokine regulating energy metabolism, appears to be associated with breast cancer progression. Insulin-like growth factor-1 (IGF-1) mediates the pathogenesis of breast cancer. The regulation of IGF-1 expression by leptin in breast cancer cells is unclear. Here, we found that leptin upregulates IGF-1 expression at the transcriptional level in breast cancer cells. Activating protein-1 (AP-1)-binding element within the proximal region of IGF-1 was necessary for leptin-induced IGF-1 promoter activation. Forced expression of AP-1 components, c-FOS or c-JUN, enhanced leptin-induced IGF-1 expression, while knockdown of c-FOS or c-JUN abrogated leptin responsiveness. All three MAPKs (ERK1/2, JNK1/2, and p38 MAPK) mediated leptin-induced IGF-1 expression. These results suggest that leptin contributes to breast cancer progression through the transcriptional upregulation of leptin via the MAPK pathway.

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases

  • Kim, Sewoon;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.8-16
    • /
    • 2019
  • Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.

Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases

  • Jakaria, Md.;Kim, Joonsoo;Karthivashan, Govindarajan;Park, Shin-Young;Ganesan, Palanivel;Choi, Dong-Kug
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.163-171
    • /
    • 2019
  • Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.

Chronic non-bacterial osteomyelitis in the jaw

  • Kim, Soung Min;Lee, Suk Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.68-75
    • /
    • 2019
  • Chronic recurrent multifocal osteomyelitis (CRMO) is one of the most severe form of chronic non-bacterial osteomyelitis (CNO), which could result in bone and related tissue damage. This autoinflammatory bone disorder (ABD) is very difficult for its clinical diagnosis because of no diagnostic criteria or biomarkers. CRMO in the jaw must be suspected in the differential diagnosis of chronic and recurrent bone pain in the jaw, and a bone biopsy should be considered in chronic and relapsing bone pain with swelling that is unresponsive to treatment. The early diagnosis of CRMO in the jaw will prevent unnecessary and prolonged antibiotic usage or unnecessary surgical intervention. The updated researches for the identification of genetic and molecular alterations in CNO/CRMO should be studied more for its correct pathophysiological causes and proper treatment guidelines. Although our trial consisted of reporting items from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), there are very few articles of randomized controlled trials. This article was summarized based on the author's diverse clinical experiences. This paper reviews the clinical presentation of CNO/CRMO with its own pathogenesis, epidemiology, recent research studies, and general medications. Treatment and monitoring of the jaw are essential for the clear diagnosis and management of CNO/CRMO patients in the field of dentistry and maxillofacial surgery.

Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration

  • Son, Gowoon;Jahanshahi, Ali;Yoo, Seung-Jun;Boonstra, Jackson T.;Hopkins, David A.;Steinbusch, Harry W.M.;Moon, Cheil
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.295-304
    • /
    • 2021
  • Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-β production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system.

Single-Cell Toolkits Opening a New Era for Cell Engineering

  • Lee, Sean;Kim, Jireh;Park, Jong-Eun
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Since the introduction of RNA sequencing (RNA-seq) as a high-throughput mRNA expression analysis tool, this procedure has been increasingly implemented to identify cell-level transcriptome changes in a myriad of model systems. However, early methods processed cell samples in bulk, and therefore the unique transcriptomic patterns of individual cells would be lost due to data averaging. Nonetheless, the recent and continuous development of new single-cell RNA sequencing (scRNA-seq) toolkits has enabled researchers to compare transcriptomes at a single-cell resolution, thus facilitating the analysis of individual cellular features and a deeper understanding of cellular functions. Nonetheless, the rapid evolution of high throughput single-cell "omics" tools has created the need for effective hypothesis verification strategies. Particularly, this issue could be addressed by coupling cell engineering techniques with single-cell sequencing. This approach has been successfully employed to gain further insights into disease pathogenesis and the dynamics of differentiation trajectories. Therefore, this review will discuss the current status of cell engineering toolkits and their contributions to single-cell and genome-wide data collection and analyses.

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

Untold story of human cervical cancers: HPV-negative cervical cancer

  • Lee, Jae-Eun;Chung, Yein;Rhee, Siyeon;Kim, Tae-Hyung
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.429-438
    • /
    • 2022
  • Cervical cancer is the fourth most common malignancy in women worldwide. Although infection from human papillomavirus (HPV) has been the leading cause of cervical cancer, HPV-negative cervical cancer accounts for approximately 3-8% of all cases. Previous research studies on cervical cancer have focused on HPV-positive cervical cancer due to its prevalence, resulting in HPV-negative cervical cancer receiving considerably less attention. As a result, HPV-negative cervical cancer is poorly understood. Its etiology remains elusive mainly due to limitations in research methodology such as lack of defined markers and model systems. Moreover, false HPV negativity can arise from inaccurate diagnostic methods, which also hinders the progress of research on HPV-negative cervical cancer. Since HPV-negative cervical cancer is associated with worse clinical features, greater attention is required to understand HPV-negative carcinoma. In this review, we provide a summary of knowledge gaps and current limitations of HPV-negative cervical cancer research based on current clinical statistics. We also discuss future directions for understanding the pathogenesis of HPV-independent cervical cancer.