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a b s t r a c t

Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal
injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most
frequently used natural products. Its use has a long history as a cure for various diseases because its
extracts and active compounds exhibit several pharmacological properties against several disorders.
However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion
channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from
the different pharmacological potentials, ginseng and its active compounds modulate various ion
channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the
signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to
NDDs.
� 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the nervous system, neurodegenerative diseases (NDDs) are
multifactorial debilitating disorders that are characterized by
progressive dysfunction and neuronal injury leading to a slow but
irreversible deterioration of brain functions which affects around
30 million individuals worldwide [1e4]. Although some symp-
tomatic treatments are available, specific treatments have not yet
been discovered [5]. Ginseng is considered to be one of the widely
used traditional herbal medicines [6]. Ginseng and its constituents
have been documented to produce aphrodisiac, adaptogenic,
immunomodulatory, antiinflammatory, antioxidant, antiaging,
anticancer, antifatigue, antidiabetic, pulmonary protective, hep-
atoprotective, cardioprotective, hypolipidemic, and renoprotective
effects in various studies [7e21].

Furthermore, ginseng extracts and its active compounds have
exhibited properties including antistress, antidepressive, and neu-
roprotective in various studies of neurological disease models [22e
30]. They also enhanced cognitive performance and help maintain
brain health [30e34]. Recently, various studies have reported on the

potential role of ginseng and its active compounds in treating
neurological disorders. Here, focusing on potential therapies for
NDDs, we present the signalmodulating potential of ginseng and its
active compounds.

2. Role of ginseng and its active compounds in modulating
ion channel signaling pathways

2.1. Modulation of voltage-gated ion channel

Various sources of evidence have suggested that ginsenosides
regulate the neuronal Naþ channels. In Xenopus oocytes, ginseno-
side Rg3 carbohydrate component inhibited the inward Naþ peak
current [35]. Also, in Xenopus oocytes, Rg3 inhibited the Naþ

channel by acting on the resting and open states of the Naþ channel
via contact with the S4 voltage sensor segment of domain II [36].
Moreover, ginsenoside Rh2 inhibited the Naþ channel function by
inhibiting veratridine-dependent depolarization of mouse syn-
aptoneurosomes following the inhibition of l-glutamate and
g-amino butyric acid releases [37].
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By activating the Kþ channel, some ginsenosides regulated the
electrical state of excitable neurons. In Xenopus oocytes, ginsenoside
Rg3 enhanced outward large-conductance Ca2þ and voltage-gated
big Kþ (BKCa) channel currents in a concentration-dependent,
voltage-dependent and reversible manner [38]. Moreover, in rat’s
brain, ginsenoside Rfeactivated G protein-gated inwardly rectifying
potassium (GIRK) channels through an unidentified G protein-
coupled receptor [39].

In neuronal cells, ginsenosides are capable of inhibiting the Ca2þ

channels. Ginseng total saponins are the main bioactive ingredients
of P. ginseng. By inhibiting L-type Ca2þ channels, the ginseng total
saponinsdecreased theKCl-inducedneuronal loss inprimarycortical
neurons [40]. In Xenopus oocytes, BKCa channels are heterologously
expressed. Gintonin treatment activated the BKCa channel and
expressed the a-subunit of the BKCa channel in a concentration-
dependent manner [41]. In primary hippocampal neurons, through
L-type Ca2þ channels, ginsenoside Rg1 inhibited Ca2þ influx [42].
Furthermore, in the amyloid beta (Ab)25e35 model, ginsenoside Rg1
inhibits high-voltageeactivated calcium channel currents in hippo-
campal neurons [43]. In addition, ginsenoside Rb1 inhibited voltage-
gated calcium channel currents in a concentration-dependent
manner, and upon washout, the current was mostly recovered. In
hippocampal neurons, Rb1 selectively inhibits the action of L-type
voltage-gated calcium channelswithout affecting the N-type or P/Q-
type Ca2þ channels [44]. The signal modulating effects of active
ginseng compounds on voltage-gated ion channels are shown in
Fig. 1.

2.2. Modulation of the ligand-gated ion channel

2.2.1. Nicotinic acetylcholine receptors
Active ginseng compounds modulate nicotinic acetylcholine

receptors (nAChRs). In oocytes expressing nAChR subunits (a1b1dε
or a3b4), ginsenosides inhibited the acetylcholine (ACh)-induced
inward currents (IACh). This potential indicates that ginsenosides
directly control the nAChR channel activities. In the case of IACh
inhibition, protopanaxatriol (PPT) ginsenosides (Re, Rf, Rg1, or Rg2)
were more powerful than protopanaxadiol (PPD) ginsenosides
including Rb1, Rb2, Rc, and Rd [45]. Conversely, by the desensiti-
zation of ACh induced in oocytes expression, ginsenoside Rg2
reduced the peak current and elevated the inward currents in hu-
man nAChR subunits a3b4, a3b2, a4b4, and a4b2 [46]. Moreover,

through nAChR channel activity, ginsenosides show the inhibitory
effects on IACh reduction of catecholamine release. Regarding the
heterologous expression of the a9a10 subunits of nAChR in Xenopus
oocytes, IACh is blocked by ginsenosides with a potency order of
Rg3> Rb2 > CK > Re ¼ Rg2> Rf > Rc > Rb1 > Rg1 in a rescindable
means. Ginsenoside Rg3's blocking effects on IACh were the same
after preapplication linked to ginsenoside Rg3 co-application.
Furthermore, a10 subunit of a9a10 nAChR might play an impor-
tant role in Rg3-induced regulation of the a9a10 nAChR [47]. Be-
sides, a recent study described the ameliorative effect of Rg1 on
lipopolysaccharide (LPS)-induced cognitive deficits. Rg1 treatment
inhibited LPS-induced reduction of ACh levels and an increase in
acetylcholinesterase activity. LPS treatment reduced the a7 nAChR
protein expression in the prefrontal cortex and hippocampus, but
Rg1 treatment reverted the changes [48]. Furthermore, choline
acetyltransferase (ChAT) and vesicular acetylcholine transporter
(VAChT) are essential for cholinergic neurotransmission. Ginseno-
sides Rd and Re regulated both ChAT and VAChT. In Neuro-2a cells,
the Rd and Re effectively induced the ChAT/VAChT genes expres-
sion and ACh promotion [49].

2.2.2. g-amino butyric acid receptors
Ginsenosides interact with the g-amino butyric acid (GABAA)

receptor and might regulate the ligand binding with the GABAA
receptor. In a rat brain membrane fraction, ginsenosides differen-
tially regulate the binding of [3H]-flunitrazepam or [3H]-muscimol
to the GABAA receptor [50]. Conversely, longer infusion of ginse-
noside Rc raises [3H]-muscimol binding to the GABAA receptor in a
region-specific way in the rat brain [51]. Another study showed that
ginsenosides enhance the GABA-mediated channel activity and
thus control the GABAA receptor channel activity [52]. Therefore, in
studies using Xenopus oocytes, ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf,
Rg1, and Rg2 affected the activity of GABAA receptor channel in
human recombinant GABAA receptor expression. Ginsenoside Rc
utmost potently improved the GABA-induced inward peak current
(IGABA). A GABAA receptor antagonist (bicuculline) and a GABAA
channel blocker (picrotoxin) blocked the ginsenoside Rc stimula-
tory effect on IGABA. Regarding the Cl� channel blockers, niflumic
acid and, on the IGABA, 4,40-diisothiocyanostilbene-2,20-disulfonic
acid both attenuated the ginsenoside Rc effect. Therefore, by
affecting the binding affinities of the GABAA receptor ligands, gin-
senosides may regulate the GABAA receptor [52]. Besides, the

Fig. 1. Effects of active ginseng compounds on voltage-gated ion channels. Active ginseng compounds modulate the channels activities. GTS, ginseng total saponins; GIRK, G
protein-gated inwardly rectifying potassium; L-type VGCC, L-type voltage-gated calcium channel; BKca channel, large-conductance Ca2þ and voltage-gated big Kþ channel.
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regulatory effects of ginsenoside metabolites differ from those of
ginsenosides. The human recombinant GABAA receptor (a1b1g2s)
channel activity expressed in Xenopus oocytes, M4, a metabolite of
PPT ginsenosides, more potently inhibited the IGABA than PPD. The
effect of M4 and PPD on IGABA was both concentration-dependent
and reversible. The half-inhibitory concentration (IC50) values of
M4 and PPD were 17.1 � 2.2 and 23.1 � 8.6 mM, respectively. The
inhibition of IGABA by M4 and PPD was voltage-independent and
noncompetitive [53]. Using a conventional whole-cell patch-clamp
technique in acutely isolated rat hippocampal CA3 pyramidal
neurons, compound K produced a potential effect on GABAergic
spontaneous miniature inhibitory postsynaptic currents. Com-
pound K increases spontaneous GABA release by increasing
intraterminal Ca2þ concentration through Ca2þ release from pre-
synaptic Ca2þ stores [54]. A recent report indicated that GABAA
receptor agonist pretreatment significantly potentiated the
Panax quinquefolius neuroprotective effect. Regarding the sleep
deprivation, GABAergic mechanism induced anxiety-like behavior,
mitochondrial dysfunction, oxidative stress, hypothalamicepitui-
taryeadrenal axis activation and neuroinflammation that could be
involved in the P. quinquefolius neuroprotective outcome [55].

2.2.3. Glutamate receptors channel activity
In different neurotoxic agentseinduced models, active ginseng

compounds produced effects that confirmed the potential effects of
ginseng active compounds on glutamate receptors. In rat hippo-
campal cultures, Rg3 reduced the high Kþ-, glutamate-, and
N-methyl-D-aspartate (NMDA)-induced Ca2þ influx [56]. Ginseng
total saponins decreased glutamate-induced cultured rat astrocytes
swelling [57]. Ginsenosides Rb1 and Rg3 produced a protective
effect against glutamate-induced neurotoxicity. In this study, Rb1
and Rg3 prevent the nitric oxide (NO) overproduction, malondial-
dehyde formation. The treatments also preserved the superoxidase
dismutase level and diminished the Ca2þ influx in rat cortical cul-
tures [58]. In the Huntington’s disease model, the neuroprotective
effects of ginsenosides Rb1, Rc, and Rg5 might be due to the inhi-
bition of glutamate-induced Ca2þ responses in cultured medium
spiny striatal neuronal culture [59]. In cultured mouse cortical
neurons, notoginsenoside R1 (NGR1) also prevented glutamate-

mediated neurotoxicity [60]. Pretreatment with ginsenosides
attenuated NMDA- or substance P-induced nociceptive behavior
through the intrathecal route [61,62]. With respect to the ginse-
nosides, the pretreatment attenuates the kainate-induced cellular
death in hippocampal neurons [63]. Ginsenoside Rb3 could exert a
neuroprotective role on hippocampal neurons, a role which was
partly mediated by the facilitating Ca2þ-dependent deactivation of
NMDA receptors and the resulting reduction of intracellular free
Ca2þ level [64]. Ginsenosides Rh2 and Rg3 prevent the NMDA re-
ceptor channel currents in cultured rat hippocampal neurons [65].
Moreover, in in vitro and in vivo studies of homocysteine (HC)-
induced hippocampal excitotoxicity, ginsenoside Rg3 produced
neuroprotective activity. Furthermore, in vivo experiments showed
that intracerebroventricular Rg3 preadministration significantly
and dose-dependently decreased the HC-induced hippocampal
damage in rats. Treatment with Rg3 has been found to dose-
dependently inhibit the HC-induced elevation of intracellular
Ca2þ levels. In addition, in Xenopus oocytes expressing the NMDA
receptor, Rg3 treatment dose-dependently repressed HC-induced
currents [66]. Regarding the effects of ginsenoside metabolites on
NMDA receptor channel activity, PPT contrasting compound K and
PPD were reversibly repressed the NMDA-mediated inward cur-
rents (INMDA) in a dose-dependent manner. INMDA inhibition by PPT
was noncompetitive with NMDA and was self-regulating the
membrane holding potential, although ginsenoside Rh2, Rg3, and
PPT interrelate with the NMDA receptor [67]. Ginsenoside Rb1
produced the anti-fatigue effect through the inflammatory
cytokine-mediated NMDA receptor pathway [68]. The protective
effects of active ginseng compounds on toxins-induced excitotox-
icity through the glutamate receptors are shown in Fig. 2.

3. Various specific molecular signaling and their modulating
effect by ginseng and its active compounds

3.1. Toll-like receptor involving pathways

In an Alzheimer’s disease (AD) cellular model, ginsenoside Rg1
produced antineuroinflammatory activity through a toll-like re-
ceptor (TLR) pathway. In NG108-15 cells, Ab25e35 markedly

Fig. 2. Potential activities of active ginseng compounds in toxin-induced neurotoxicity models. GTS, ginseng total saponins; NGR1, notoginsenoside R1. Glutamate, homo-
cysteine and kainate cause an increase in intracellular calcium level leading to excitotoxicity. Active ginseng compounds produce protective activities against toxins-induced
excitotoxicity.
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increased the expressions of TLR3 and TLR4. In a concentration-
dependent manner, Rg1 significantly reduced the expressions of
both proteins as well as mRNA of TLR3 and TLR4 [69].

3.1.1. Mitogen-activated protein kinase pathway
Red ginseng marc oil (RMO) reduced the p38 mitogen-activated

protein kinase (MAPK) and its upstream kinases including MAPK
kinases 3/6 (MKK3/6) phosphorylation. By blocking the p38 MAPK
pathway, RMO produced an antiinflammatory effect in LPS-induced
RAW 264.7 macrophages [70]. Ginseng pectin pretreatment
enhanced the phosphorylation of both the extracellular signal-
regulated kinases 1 and 2 (ERK1/2) in cortical neuron cells and in
U87 cells, it also increased the ERK1/2 phosphorylation. Owing to the
activation of the phosphorylation of ERK1/2, ginseng pectin pro-
duced this neuroprotective activity against H2O2-induced apoptosis
[71]. In LPS-inducedRAW264.7 cells, synthesized gold nanoparticles
(AuNPs) using Panax ginseng exert antiinflammatory effects through
p38 MAPK [72]. Likewise, gintonin produced antiinflammatory ac-
tivity via the signal transduction through MAPK, and it potently
suppressed the NO production and also efficiently suppressed the
proinflammatory cytokines levels in RAW 264.7 cells [73].

Different doses of ginsenoside Rb1 pretreatment noticeably
attenuated tau protein hyperphosphorylation and the expression of
c-Jun N-terminal kinase (JNK)/p38 MAPK in Ab25-35-induced model
[74]. In 1-methyl-4-phenylpyridinium (MPPþ)-treated PC12 cells,
Rb1 improved ERK1/2 phosphorylation and reduced phosphory-
lated p38 or stress activated protein kinase/JNK. Rb1 increased
ERK1/2 phosphorylation, and it was abrogated by estrogen receptor
siRNA [75]. By upregulating the growth-associated protein 43
(GAP-43) expression through ERK-dependent signaling pathways,
ginsenoside Rd may help PC12 cells neurite outgrowth [76]. In
addition, Rd efficiently inhibited the activation of the MAPK
signaling pathway induced by spinal cord injury in the rat model,
which might be involved in the neuroprotective activity of Rd
against spinal cord injury [77].

In various studies, ginsenosides Rg1 and Rg5 have shown po-
tential effects through this pathway. To promote cell proliferation,
ginseng and Rg1 increase the MAPK signaling pathways. In RSC96
cells, ginseng and Rg1 were recognized to have proliferative effects
that are MAPK signaling-dependent [78]. In addition, Rg1 produced
antiinflammatory activity in BV-2 microglial cells. In this study,
phosphoinositide phospholipase C-g1 inhibition was moderately
abolished, andRg1produced an inhibitoryeffect on ERK1/2, JNK, and
p38 MAPK phosphorylation. Therefore, by suppressing the neuro-
toxic proinflammatory mediators and cytokines expression, Rg1
expressively attenuates the overactivation ofmicroglial cells through
phospholipase C-g1 signaling pathway activation [79]. Besides, Rg1
improves the neurite outgrowth and defends against Ab25e35-
induced damage, and this mechanism may be involved in the acti-
vation of ERK1/2 signaling [80]. Additionally, Rg1 activated the ERK/
MAPK pathway in another study [81]. Ginsenoside Rg5 inhibited the
phosphorylation of MAPKs and the DNA binding activities in LPS-
stimulated BV-2 microglial cells and primary rat microglia [82].

NGR1 and compound K show potential activity through the
modulation of this pathway. NGR1 produces a sufficient effect by
inducing an estrogen receptoredependent ERK1/2 pathway [83].
Compound K significantly suppressed the Phorbol-12-myristate-
13-acetate-mediated p38MAPK, ERK, and JNK activation, which are
upstreammodulators of activator protein-1. In addition, compound
K also inhibited the invasiveness of in vitro glioma cells [84].

3.1.2. Nuclear factor kappa-light-chain-enhancer of activated B
cells pathway

RMO and AuNPs obtained from the leaf extract of P. ginseng and
gintonin produced antiinflammatory activities in the LPS-induced

RAW 264.7 macrophage cell line [70,72,73]. RMO treatment
reduced the inducible nitric oxide species and cyclooxygenase-2 at
both the mRNA and protein levels, with a blockade of the nuclear
translocation of the p65 subunit. Hence, due to the inhibition of
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
kB) transcriptional activity, RMO might produce this antiin-
flammatory effect [70]. Moreover, AuNPs decreased inflammatory
mediators, including NO, prostaglandin E2, interleukin-6, and tu-
mor necrosis factor-a, expression. In RAW 264.7 cells, AuNPs sup-
pressed the LPS-induced activation of NF-kB signaling [72]. At the
given doses, gintonin effectively suppressed the NO production
without any cytotoxicity and also proficiently suppressed the
proinflammatory cytokines levels. Furthermore, it facilitates signal
transduction through NF-kB pathways and recovers the mir-34a
and mir-93 levels [73].

In the AD model, P. ginseng ginsenosides Rg1, Rg3, Rd, and Rg3
enriched the extract, producing potential activities [85e88]. In an
advanced glycation end producteinduced AD model, ginseng
showed the neuroprotective effects through the significant
decrease in the expression of the receptor for advanced glycation
end-products and NF-kB in a rat [86]. In transgenic mice, Rd might
improve learning and memory ability in used Ab precursor by
inhibiting the transcription activity of NF-kB. Moreover, by sup-
pressing the activated NF-kB pathway, the proinflammatory cyto-
kines were further reduced, and the protective factors were
generated [87]. In a scopolamine-induced model, the oral admin-
istration of ginsenoside Rg3-enriched ginseng extract (Rg3GE)
suppressed the increase in acetylcholinesterase activity and stim-
ulation of the NF-kB pathway (i.e., phosphorylation of p65) in the
hippocampus [88]. In the LPS-induced BV-2 microglia cell line,
ginsenosides Re and Rh1 produced antiinflammatory activity
[89,90]. Re produced neuroprotective events through phospho-
p38, iNOS, and COX-2 signaling pathways [89]. Without affecting
NF-kB DNA binding, ginsenoside Rh1 inhibited LPS-induced NF-
kBemediated transcription. In addition, an increase in cAMP
responsive element-binding protein was identified to result in the
suppression of NF-kBemediated transcription [90]. Moreover, in a
study of oxidative stress, ginsenoside Rg1 normalized the oxidative
stresseinduced nonmuscle myosin heavy chain IIA (NMMCH IIA)
overexpression in PC12 cells. The collected data showed that the
NMMCH IIA-NF-kappa B/p65 pathway was involved in oxidative
stresseinduced cell death [91]. The effects of active ginseng com-
pounds through the MAPK and NF-kB pathways are summarized in
Table 1.

3.2. Caspase-3 and Bcl-2-like protein 4-mediated pathways

Ginsenosides showed potential activity through these path-
ways. NGR1 produced neuroprotective activity by suppressing
caspase-3 activation [83]. In PC12 cells, ginsenoside Rb1 prevented
MPPþ-induced caspase-3 activation and DNA fragmentation. Be-
sides, Rb1 also activated B-cell lymphoma-extra-large (Bcl-xL) and
reduced apoptosis [75]. Ginsenoside Rg1 inhibited the caspase-3
signaling pathway and myosin IIA-actin interaction, and through
these inhibitions, it produced neuroprotective activity [92]. In an
MPPþ-induced apoptosis in human neuroblastoma (SH-SY5Y) cells
model, Rg1 can effectively decrease the expression of MPPþ-
induced upregulation of Bax and decrease the B-cell lymphoma 2
(Bcl-2) expressions. In addition, Rg1 can effectively decrease the
MPPþ-induced toxicity by inhibiting the activation of caspase-3
[93]. A recent study revealed that ginsenoside Rd prevented tri-
methyltin-induced cell apoptosis via regulation of caspase-3, Bcl-2,
and Bcl-2elike protein 4 [94]. With respect to the ginsenoside Rb1,
it suppressed the activation of ER stress-associated proteins
including protein kinase RNAelike endoplasmic reticulum kinase
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and C/EBP homology protein and high glucose induced Bcl-2
downregulation in hippocampal neurons [95].

3.3. Phosphoinositide 3-kinase/protein kinase B pathway

Ginseng protein produced neuroprotective activity in D-galac-
tose/AlCl3-induced ADmodel, and protective effect is connected to
the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt)
signaling pathway [96]. Ginseng protein decreased the Ab1-42
content and phosphor-tau and enhanced the mRNA and PI3K and
phospho-Akt/Akt protein expression in the hippocampus [96].
Ginsenoside Rd promotes the glutamate clearance, which was

achieved by upregulating the glutamate transporter 1 expression
via the PI3K/Akt pathway [97]. Neurite outgrowth is a crucial
process associated with neuronal repair. In addition, Rd produced
an effect on neurite outgrowth, and the upregulation of GAP-43
expressions through PI3K/Akt-dependent pathways might be
responsible for this activity [76]. Furthermore, an experimental
Parkinson's disease model induced by MPPþ in SH-SY5Y showed
that different concentrations of Rd had a neuroprotective effect.
This protective effect might be due to the PI3K/Akt survival-
signaling pathway [98].

Various studies have shown that ginsenosides Rg1 and Rg5 show
beneficial effects through this pathway. Ginsenoside Rg1 enhances

Table 1
Potential effects of ginseng and its active compounds through the MAPK and NF-kB pathways.

Ginseng/active
compounds

Models Major effects References

Rb1 Ab25-35-induced embryo
rat cortical neurons

Different doses attenuate tau protein hyperphosphorylation and the expression of JNK/
p38 MAPK in the process.

[74]

MPPþ-treated PC12 cells Improves ERK1/2 phosphorylation levels and reduced phosphorylated p38 or SAPK/JNK. [75]
Rd PC12 cells Helps the neurite outgrowth through upregulating the growth associated protein 43

expression through ERK-dependent signaling pathways.
[76]

Spinal cord injury in rat Produces neuroprotective activity by efficiently inhibiting the activation of the MAPK
signaling pathway.

[77]

APP transgenic mice By inhibiting the transcription activity of NF-kB, might improve learning and memory
when APP is used. Moreover, by suppressing the activated NF-kB pathway, further
reduces the pro-inflammatory cytokines and generates protective factors.

[87]

Rg1 Ab25e35-induced NG108-15 cells Reduces the increased expressions of both TLR3 and TLR4. [69]
RSC96 cells Produces the proliferative effects through the MAPK signalingedependent pathway. [78]
BV-2 microglial cells Attenuates the overactivation of phosphoinositide phospholipase C-g1 and produces the

inhibitory effect on the ERK1/2, JNK and p38 MAPK phosphorylation.
[79]

Ab25e35-induced cultured
hippocampal neurons

Improves neurite outgrowth and defends against damage, and the mechanism may
comprise the activation of ERK1/2 signaling.

[80]

PC12 cells By CaMKIIa, it activates the ERK/MAPK pathway. [81]
H2O2-induced PC12 cells Normalizes the oxidative stress-induced NMMCH IIA overexpression. Regarding the

collected data, NMMHC IIA-NF-kappa B/p65 pathway involved in oxidative stress-
induced cell death.

[91]

Rg3GE Scopolamine-induced mice Suppresses the increase in acetylcholinesterase activity and stimulation of the NF-kB
pathway (i.e., phosphorylation of p65) in the hippocampus.

[88]

Rg5 LPS-stimulated BV-2 microglial
cells and rat primary microglia

Inhibits the phosphorylation of MAPKs and the DNA binding activities. [82]

Rh1 LPS-induced microglia Without affecting NF-kB DNA binding, it inhibits NF-kBemediated transcription. In
addition, due to the NF-kBemediated transcription, an increase of cAMP responsive
element-binding protein might have been identified.

[90]

Re LPS-induced BV-2 microglia Produces the neuroprotective events through the phospho-p38, iNOS and COX-2
signaling pathways.

[89]

RMO LPS-induced RAW 264.7 macrophages Reduces the p38 MAPK and its upstream kinases including MAPK kinases 3/6 (MKK3/6)
phosphorylation.

[70]

LPS-induced RAW 264.7 macrophages Reduces the iNOS and COX-2 at both mRNA and protein levels, blockade of nuclear
translocation of the p65 subunit. Henceforth, due to the inhibition of NF-kB
transcriptional activity, it might have produced this anti-inflammatory effect.

[70]

Ginseng Pectin H2O2-induced apoptosis in
cortical neuron cells and U87 cells

Pretreatment enhances the phosphorylation of both the extracellular signal-regulated
kinases 1 and 2 (ERK1/2).

[71]

AuNPs LPS-induced RAW 264.7 cells Exerts anti-inflammatory effects through the suppression of NF-kB signaling pathway
activation through p38 MAPK.

[72]

LPS-induced RAW 264.7 cells Decreases inflammatory mediators such as NO, prostaglandin E2, interleukin-6 and
tumor necrosis factor-a, expression.

[72]

Gintonin LPS-induced RAW 264.7 cells Produces anti-inflammatory activity via the signal transduction through MAPK, and
potently suppresses the nitric oxide production and also efficiently suppressed the
proinflammatory cytokines levels.

[73]

LPS-induced RAW 264.7 Effectively suppresses the NO production without any cytotoxicity and also proficiently
suppresses the proinflammatory cytokines levels. Furthermore, facilitates signal
transduction through NF-kB pathways and recovers the mir-34a and mir-93 levels.

[73]

NGR1 H2O2-induced PC12 cells Produces neuroprotective activity the effect by inducing an estrogen receptor-dependent
ERK1/2 pathway.

[83]

Compound K Phorbol myristate
acetateemediated human
astroglioma cells

Significantly suppresses the p38 MAPK, ERK, and JNK activation, which are upstream
modulators of activator protein-1.

[84]

Ginseng Advanced glycation end
producte induced AD in rat

Shows neuroprotective effects through the significant decreasing the expression of
receptor for advanced glycation end-products and NF-kB.

[86]

AD, Alzheimer’s disease; APP, amyloid b-protein precursor; AuNPs, synthesized gold nanoparticles; CaMKIIa, calcium/calmodulin-dependent protein kinase type II alpha
chain; JNK, c-Jun N-terminal kinase; LPS, lypopolysaccharide; MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated; NGR1:
notoginsenoside R1; NMMCH IIA, nonmuscle myosin heavy chain IIA; NO, nitric oxide; Rg3GE, Rg3-enriched ginseng extract; RMO, Red ginseng marc oil; SAPK, stress
activated protein kinase; TLR, toll-like receptor.
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neurite outgrowth and protects against Ab25e35-induced damage,
and its mechanism may involve the activation of Akt signaling [71].
In LPS-stimulated BV-2 microglial cells and rat primary microglia,
Rg5 produced an antiinflammatory activity. The studies indicated
that Rg5 inhibited the phosphorylation of PI3K which are upstream
molecules controlling the inflammatory reactions [82]. Moreover,
pseudoginsenoside-F11 produced antineuroinflammatory activity
on activated microglia. Pseudoginsenoside-F11 inhibited neuro-
inflammation LPS-induced in N9 microglia by inhibiting the acti-
vation of TLR4 mediated PI3K/Akt pathways [99]. NGR1 produced a
neuroprotective activity by suppressing the H2O2-induced intra-
cellular reactive oxygen species accumulation and increasing the
product of lipid peroxidation (malondialdehyde), protein oxidation
(protein carbonyl), DNA fragmentation (8-OHdG), mitochondrial
membrane depolarization as well as caspase-3 activation. This
neuroprotective activity is occurred by inducing estrogen receptor-
dependent crosstalk between Akt pathways [83].

3.4. Insulin-like growth factor-I receptor signaling

A study of MPPþ-induced apoptosis model in PC12 cells showed
that ginsenoside Rb1 had neuroprotective effects. In caspase-3-
dependent apoptosis pathway, Rb1 protects the PC12 cells through
the estrogen receptor [75]. In a study on RSC96 Schwann cells,
ginseng and ginsenoside Rg1 exhibited proliferation and migration-
enhancing properties. Ginseng and ginsenoside Rg1 improve the
insulin-like growth factor-I receptor (IGF-IR) pathway regulators’
protein expression. Moreover, Rg1 with biomedical materials would
be a possible method to improve neuron regeneration [78].
Ginsenoside Rg1 produced neuroprotective effects against 6-
hydroxydopamine (6-OHDA)einduced neurotoxicity [100,101]. In
the 6-OHDAeinduced model of nigrostriatal injury, Rg1 showed a
neuroprotective activity, and this effect might involve the activation
of the IGF-IR signaling pathway. Rg1 treatment ameliorated this
behavior in apomorphine-induced rotational behavior. In addition,
6-OHDA significantly reduced the striatum dopamine content, and
Rg1 reversed the significant effects of 6-OHDA [101]. Besides, in 6-
OHDAeinduced neuronal damages in SK-N-SH cells, Rg1 produced
neuroprotective effects through the activation of the IGF-IR, ER
signaling pathways, and its antiapoptotic potentials [100].

3.5. Nuclear factor (erythroid-derived 2)-like-2 factor pathway

P. ginseng extract produced antidepressant activity in a chronic
restraint stress -induced depression model in mice. In this study,
P. ginseng extract showed anti-neuroinflammatory and antioxidant,
nuclear factor (erythroid-derived 2)-like-2 factor/heme oxygenase-
1 (Nrf2/HO-1 activation) activity by inhibiting the hypothalamoe
pituitaryeadrenal axis mechanism [102]. Ginsenoside Rb1 activates
the Nrf2/HO-1 signaling pathway to display a potent neuro-
protective activity against tert-butylhydroperoxideeinduced
oxidative injury. In cultured neural progenitor cells, Rb1 activates
the Nrf2 pathway and led to an elevated HO-1 expression [103,104].
In iron-induced neurotoxicity, the antioxidative properties that
trigger the Akt/Nrf2 pathway and increase the Nrf2-induced HO-1
and Cu/Zn superoxidase dismutase expression allowed ginseno-
side Rg1 protect the human neuroblastoma SK-N-SH cells [105].
Similarly, ginsenoside Rh3 improves the Nrf2 DNA-binding activity
[106]. PPT ginsenosides improve the Nrf2 inflowing to the nucleus
and induced antioxidant response elements (ARE) such as HO-1
and the expression of nicotinamide adenine dinucleotide phos-
phate (NADPH) quinone oxidase 1. Subsequently, PPT shows a
neuroprotective activity against 3-nitropropionic acideinduced
injury (oxidative stress) in the rat model of Huntington's disease
[107]. Additionally, NGR1 improves Nrf2 nuclear translocation and

ARE activity. It also upregulates the expression and effects of HO-1,
NADPH quinone oxidase 1, and gamma-glutamylcysteine synthe-
tase. NGR1 provides neuroprotective activity by inducing the es-
trogen receptor-dependent activating Nrf2/ARE signaling [83].

3.6. Nerve growth factor and brain-derived neurotrophic factor
pathways

Various research studies have shown that ginseng extracts, as
well as its active compounds, exert potential activity through these
pathways. In Neuro-2a cells, ginsenosides Rd and Re treatments
meaningfully improved the microtubule-associated protein-2,
nerve growth factor receptor (p75), p21, and tropomyosin receptor
kinase A genes and proteins expression. Therefore, Re and Rd play a
significant role in differentiation of neuron and the nerve growth
factoretropomyosin receptor kinase A signaling pathway [49].

In the rat model, P. ginseng showed neuroprotective activity
against LPS-induced brain injury. LPS causes elevated brain NO and
serum HC associated with a reduction of brain-derived neuro-
trophic factor (BDNF) level. On the other hand, in the treated group,
P. ginseng significantly attenuated these compared to the LPS group
[108]. A study showed that P. notoginseng saponins promote the rat
embryonic cortical neural stem cells survival, self-renewal, prolif-
eration, and differentiation through neurotrophic factors in the
autocrine or paracrine signaling [109].

Ginsenoside Rg1 also improved the memory performance
[110,111]. In the AD model, Rg1 treatment reduced the Ab1-42 accu-
mulations and phosphorylated (p)-Tau protein. Rg1 treatment also
upregulated the BDNF and phosphorylated tropomyosin receptor
kinase B. Similarly, Rg1 treatment also restored the long-term
potentiation in the AD mice model. In another study, through the
hippocampal BDNF upregulation, Rg1 treatment improved the
memory performance in middle-aged mice, changing apical spines
and helping hippocampal long-term potentiation [111].

Ginsenoside Rb1 revealed a neuroprotective activity against
cerebral ischemia. After Rb1 infusion, the number of nestin-positive
cells apparently increased. At different points in time, Rb1-treated
rats showed a BDNF level that significantly improved compared to
that of ischemic rats. These neuroprotective effects might be
because of the promotion of the neurogenesis and expression of
BDNF regulation [112]. In addition, Rb1 showed the preventive and
therapeutic effects on the neural injury during cerebral infarction in
rat’s model via middle cerebral artery occlusion. The increases in
occlusion duration resulted in a decline in interleukin-1 levels and
GAP-43 level and an increase in BDNF levels and neurofilaments.
These effects might be due to a decrease in inflammation and
assistance in the growth of nerve cells [113].

Ginsenosides Rb3, Rg1, and Rg3 produced antidepressant ac-
tivity through the BDNF signaling pathway [114e117]. In a study of
the chronic mild stress model, treatment with Rb3 significantly
increased the BDNF level in the prefrontal cortex and hippocampus
area [114]. Rg1 produced antidepressant activity via BDNF signaling
pathway. It upregulates the BDNF expression and hippocampal
neurogenesis [115,116]. Recently, Rg1 treatment prevented chronic
social defeat stresseinduced depressive-like symptoms in a
depression-induced mouse model [116]. Furthermore, Rg3
completely restored the chronic social defeat stresseinduced
reduction in the hippocampal BDNF signaling pathway [117].

3.7. Mechanistic target of rapamycin signaling, Wnt/b-catein and
Rho-associated kinase 1/Myosin light-chain kinase pathways

Compound K is produced potential activity through the mech-
anistic target of rapamycin pathway. In a study of AD model,
compound K promotes Ab clearance and enhances autophagy in

J Ginseng Res 2019;43:163e171168



primary astrocytes. It also slows AD pathological progression. In
addition, due to the mechanistic target of rapamycin phosphory-
lation, it might contribute to an enhancement in the autophagy
[118]. In in vivo and in vitro Parkinson's disease models, ginsenoside
Rg1 showed neuroprotective potentials through the Wnt/b-catenin
signaling pathway. In both the in vivo and in vitro studies, Rg1
showed protective effects on the protein and mRNA expression
levels of this pathwaymarker. With respect to the in vitro study, the
neuroprotective potentials were blocked by Dickkopf-related pro-
tein 1 [119]. In a H2O2-induced model study, treatment with Rg1
eliminated H2O2-induced differentmorphological fluctuations such
as cell rounding, membrane blebbing, neurite retraction, and nuclei
condensation. The mechanism of neuroprotection of Rg1 is con-
nected to the inhibition of myosin IIAeactin interaction and the
signaling pathway of Rho-associated kinase 1/Myosin light-chain
kinase [92].

4. Conclusion

Recently, medicinal plants have shown potent pharmacological
roles in various disorders that have been proven in several pre-
clinical and clinical studies. Identifying the proper therapeutic
targets is essential to setting up treatment strategies for various
neurological disorders. In case of NDDs, no cure has yet been
discovered, and this is a major topic of research today. In addition,
identifying therapeutic targets and therapeutic molecules are
crucial steps for the designing of therapeutic management for
NDDs. Considering the importance of having targets, several sig-
nals have demonstrated a potential pharmacological role in
various neurological disorders. Detecting these targets, allows the
possibility to discover novel compounds suitable to treat the NDDs.
Ginseng and its active substances have been known as multipo-
tential therapeutics against various acute and chronic diseases.
With respect to their multipotential role, researchers have
concentrated their research. Various reports have indicated that
they may be great therapeutic agents for neurological disorders
due to their potential activities that modulate the various molec-
ular signaling pathways.

However, research has not concluded how ginseng active com-
pounds can have specific medicinal effects on NDDs. We focused on
NDDs and here present the ion channels and specific molecular
signals that aremodulated by ginseng and its active substances. The
overview shows that ginseng components might emerge as can-
didates for NDDs due to their versatile potential, specifically, their
neuroprotective activities against neuroinflammation and
apoptotic cell death. It might be helpful to conduct deeper research
and clinical trials regarding NDDs. Also, based on signal modulating
potential, molecular modification of ginseng compounds may be
useful in obtaining superior pharmaceutical drugs. In addition,
understanding of the complex response to ginseng could allow
developing synergistic drug therapy.

To examine and validate the potential, several disease models
were designed including toxin-induced cellular and animal models
as well as transgenic models to conduct for different NDDs. Further
studies concerning specific ion channels and molecular signals
known in the pathogenesis and as therapeutic targets for NDDs are
suggested to confirm the exact pharmacological and therapeutic
activities of ginseng and its active compounds. The design and
execution of clinical studies for active ginseng compounds to treat
NDDs is a major challenge for the clinical scientist. Before clinical
studies, more investigations using laboratory-based and
informatics-based approaches should be conducted to understand
the precise medicinal efficacy, potency, and safety in the NDDs.
These approaches might give direction to modify and synthesize
new derivatives of active ginseng compounds targeting the NDDs.

Finally, the diverse potential role of ginseng active compounds
might serve a good role in treatment strategies to cure NDDs. In
near future, rigorous studies of active ginseng compounds with
their modified forms will produce drugs for therapy of NDDs.
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