Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.9.042

Untold story of human cervical cancers: HPV-negative cervical cancer  

Lee, Jae-Eun (Department of Biomedical Science, University of Sheffield)
Chung, Yein (St. Benedict Catholic Secondary School)
Rhee, Siyeon (Stanford Cardiovascular Institute, Stanford University School of Medicine)
Kim, Tae-Hyung (Department of Pathology, University of New Mexico School of Medicine)
Publication Information
BMB Reports / v.55, no.9, 2022 , pp. 429-438 More about this Journal
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide. Although infection from human papillomavirus (HPV) has been the leading cause of cervical cancer, HPV-negative cervical cancer accounts for approximately 3-8% of all cases. Previous research studies on cervical cancer have focused on HPV-positive cervical cancer due to its prevalence, resulting in HPV-negative cervical cancer receiving considerably less attention. As a result, HPV-negative cervical cancer is poorly understood. Its etiology remains elusive mainly due to limitations in research methodology such as lack of defined markers and model systems. Moreover, false HPV negativity can arise from inaccurate diagnostic methods, which also hinders the progress of research on HPV-negative cervical cancer. Since HPV-negative cervical cancer is associated with worse clinical features, greater attention is required to understand HPV-negative carcinoma. In this review, we provide a summary of knowledge gaps and current limitations of HPV-negative cervical cancer research based on current clinical statistics. We also discuss future directions for understanding the pathogenesis of HPV-independent cervical cancer.
Keywords
Cervical cancer subtypes; HPV negative cervical cancers; HPV test; Human cervical cancer models; Mutations in cervical cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chaudary N, Jaluba K, Pintilie M and Hill RP (2015) Establishment of orthotopic primary cervix cancer xenografts. Methods Mol Biol 1249, 381-391   DOI
2 Roman M, Baraibar I, Lopez I et al (2018) KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer 17, 33
3 Pirog EC (2017) Cervical adenocarcinoma: diagnosis of human papillomavirus-positive and human papillomavirusnegative tumors. Arch Pathol Lab Med 141, 1653-1667   DOI
4 Chumduri C, Gurumurthy RK, Berger H et al (2021) Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nat Cell Biol 23, 184-197   DOI
5 Lohmussaar K, Oka R, Espejo Valle-Inclan J et al (2021) Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 28, 1380-1396 e1386
6 Li C, Zhou T, Chen J et al (2022) The role of Exosomal miRNAs in cancer. J Transl Med 20, 6
7 Bhat A, Yadav J, Thakur K et al (2022) Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer 22, 164
8 Bhat A, Yadav J, Thakur K et al (2021) Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog-GLI signaling components. Cancer Cell Int 21, 319
9 Zhang Y, Liu Y, Liu H and Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9, 19
10 Durst M, Gissmann L, Ikenberg H and zur Hausen H (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 80, 3812-3815   DOI
11 Petry KU, Liebrich C, Luyten A, Zander M and Iftner T (2017) Surgical staging identified false HPV-negative cases in a large series of invasive cervical cancers. Papillomavirus Res 4, 85-89   DOI
12 Baay MF, Tjalma WA, Weyler J et al (2001) Prevalence of human papillomavirus in elderly women with cervical cancer. Gynecol Obstet Invest 52, 248-251   DOI
13 Zampronha Rde A, Freitas-Junior R, Murta EF et al (2013) Human papillomavirus types 16 and 18 and the prognosis of patients with stage I cervical cancer. Clinics (Sao Paulo) 68, 809-814   DOI
14 Sharma RK, Srivastava AK, Yolcu ES et al (2010) SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. Vaccine 28, 5794-5802   DOI
15 Immel TA, Grutzke M, Spate AK, Groth U, Ohlschlager P and Huhn T (2012) Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy. Chem Commun (Camb) 48, 5790-5792   DOI
16 Poljak M, Cuzick J, Kocjan BJ, Iftner T, Dillner J and Arbyn M (2012) Nucleic acid tests for the detection of alpha human papillomaviruses. Vaccine 30 Suppl 5, F100-106   DOI
17 Colombo N, Dubot C, Lorusso D et al (2021) Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med 385,1856-1867   DOI
18 Bonaventura P, Shekarian T, Alcazer V et al (2019) Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 10, 168
19 Shimada M, Tokunaga H, Kigawa J and Yaegashi N (2020) Impact of histopathological risk factors on the treatment of stage IB-IIB uterine cervical cancer. Tohoku J Exp Med 252, 339-351   DOI
20 Meijer CJ, Berkhof J, Castle PE et al (2009) Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer 124, 516-520   DOI
21 Prigge ES, Arbyn M, von Knebel Doeberitz M and Reuschenbach M (2017) Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: a systematic review and meta-analysis. Int J Cancer 140, 1186-1198   DOI
22 Klaes R, Friedrich T, Spitkovsky D et al (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92, 276-284   DOI
23 Larque AB, Hakim S, Ordi J et al (2014) High-risk human papillomavirus is transcriptionally active in a subset of sinonasal squamous cell carcinomas. Mod Pathol 27, 343-351   DOI
24 Alos L, Moyano S, Nadal A et al (2009) Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer 115, 2701-2709   DOI
25 Zhang J, Liu SC, Luo XH et al (2016) Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 30, 1116-1121   DOI
26 Thery C, Zitvogel L and Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2, 569-579   DOI
27 Romero-Pastrana F (2012) Detection and typing of human papilloma virus by multiplex PCR with type-specific primers. ISRN Microbiol 2012, 186915
28 Pratili MA, Le Doussal V, Harvey P et al (1986) [Human papillomaviruses in the epithelial cells of the cervix uteri: frequency of types 16 and 18. Preliminary results of a clinical, cytologic and viral study]. J Gynecol Obstet Biol Reprod (Paris) 15, 45-50
29 Iftner T, Germ L, Swoyer R et al (2009) Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays. J Clin Microbiol 47, 2106-2113   DOI
30 Jarrom D, Elston L, Washington J et al (2022) Effectiveness of tests to detect the presence of SARS-CoV-2 virus, and antibodies to SARS-CoV-2, to inform COVID-19 diagnosis: a rapid systematic review. BMJ Evid Based Med 27, 33-45   DOI
31 Weisbrod CR, Chavez JD, Eng JK, Yang L, Zheng C and Bruce JE (2013) In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J Proteome Res 12, 1569-1579   DOI
32 Barreto CL, Martins DB, de Lima Filho JL and Magalhaes V (2013) Detection of human papillomavirus in biopsies of patients with cervical cancer, and its association with prognosis. Arch Gynecol Obstet 288, 643-648   DOI
33 Higgins GD, Davy M, Roder D, Uzelin DM, Phillips GE and Burrell CJ (1991) Increased age and mortality associated with cervical carcinomas negative for human papillomavirus RNA. Lancet 338, 910-913   DOI
34 Chung HC, Ros W, Delord JP et al (2019) Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 37, 1470-1478   DOI
35 Marth C, Landoni F, Mahner S et al (2017) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28, iv72-iv83   DOI
36 Wendel Naumann R and Leath CA 3rd (2020) Advances in immunotherapy for cervical cancer. Curr Opin Oncol 32, 481-487   DOI
37 Stolnicu S, Barsan I, Hoang L et al (2018) International Endocervical Adenocarcinoma Criteria and Classification (IECC): a new pathogenetic classification for invasive adenocarcinomas of the endocervix. Am J Surg Pathol 42, 214-226   DOI
38 Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P and Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157-2165   DOI
39 Yeung AR, Pugh SL, Klopp AH et al (2020) Improvement in patient-reported outcomes with intensity-modulated radiotherapy (RT) compared with standard RT: a report from the NRG Oncology RTOG 1203 Study. J Clin Oncol 38, 1685-1692   DOI
40 Barlesi F, Scherpereel A, Gorbunova V et al (2014) Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: updated survival analysis of the AVAPERL (MO22089) randomized phase III trial. Ann Oncol 25, 1044-1052   DOI
41 Woodman CB, Collins SI and Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7, 11-22   DOI
42 Riou G, Favre M, Jeannel D, Bourhis J, Le Doussal V and Orth G (1990) Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. Lancet 335, 1171-1174   DOI
43 Reed N, Balega J, Barwick T et al (2021) British Gynaecological Cancer Society (BGCS) cervical cancer guidelines: recommendations for practice. Eur J Obstet Gynecol Reprod Biol 256, 433-465   DOI
44 Arezzo F, Cormio G, Loizzi V et al (2021) HPV-negative cervical cancer: a narrative review. Diagnostics (Basel) 11, 952
45 Yetkin-Arik B, Kastelein AW, Klaassen I et al (2021) Angiogenesis in gynecological cancers and the options for antiangiogenesis therapy. Biochim Biophys Acta Rev Cancer 1875, 188446
46 Mezache L, Paniccia B, Nyinawabera A and Nuovo GJ (2015) Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol 28, 1594-1602   DOI
47 Da Silva DM, Enserro DM, Mayadev JS et al (2020) Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929). Clin Cancer Res 26, 5621-5630   DOI
48 Gheit T, Landi S, Gemignani F et al (2006) Development of a sensitive and specific assay combining multiplex PCR and DNA microarray primer extension to detect high-risk mucosal human papillomavirus types. J Clin Microbiol 44, 2025-2031   DOI
49 Jedpiyawongse A, Homcha-em P, Karalak A and Srivatanakul P (2008) Immunohistochemical overexpression of p16 protein associated with cervical cancer in Thailand. Asian Pac J Cancer Prev 9, 625-630
50 Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S et al (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378-384   DOI
51 Nicolas I, Marimon L, Barnadas E et al (2019) HPV-negative tumors of the uterine cervix. Mod Pathol 32, 1189-1196   DOI
52 Li P, Tan Y, Zhu LX et al (2017) Prognostic value of HPV DNA status in cervical cancer before treatment: a systematic review and meta-analysis. Oncotarget 8, 66352-66359   DOI
53 Tjalma WA, Trinh XB, Rosenlund M et al (2015) A cross-sectional, multicentre, epidemiological study on human papillomavirus (HPV) type distribution in adult women diagnosed with invasive cervical cancer in Belgium. Facts Views Vis Obgyn 7, 101-108
54 Tommasino M, Accardi R, Caldeira S et al (2003) The role of TP53 in cervical carcinogenesis. Hum Mutat 21, 307-312   DOI
55 Pirog EC (2015) Diagnosis of HPV-negative, gastric-type adenocarcinoma of the endocervix. Methods Mol Biol 1249, 213-219   DOI
56 Arbeit JM (2003) Mouse models of cervical cancer. Comp Med 53, 256-258
57 Rodriguez-Carunchio L, Soveral I, Steenbergen RD et al (2015) HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis. BJOG 122, 119-127   DOI
58 Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209-249   DOI
59 Li N, Franceschi S, Howell-Jones R, Snijders PJ and Clifford GM (2011) Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer 128, 927-935   DOI
60 Xing B, Guo J, Sheng Y, Wu G and Zhao Y (2020) Human papillomavirus-negative cervical cancer: a comprehensive review. Front Oncol 10, 606335
61 Castle PE (2015) Comparison of cervical cancer screening results among 256,648 women in multiple clinical practices. Cancer Cytopathol 123, 566
62 Jimenez-Avalos JA, Fernandez-Macias JC and Gonzalez-Palomo AK (2021) Circulating exosomal MicroRNAs: New non-invasive biomarkers of non-communicable disease. Mol Biol Rep 48, 961-967   DOI
63 Syrjanen K, Mantyjarvi R, Vayrynen M et al (1987) Human papillomavirus (HPV) infections involved in the neoplastic process of the uterine cervix as established by prospective follow-up of 513 women for two years. Eur J Gynaecol Oncol 8, 5-16
64 Zhao X, Pang L, Qian Y et al (2013) An animal model of buccal mucosa cancer and cervical lymph node metastasis induced by U14 squamous cell carcinoma cells. Exp Ther Med 5, 1083-1088   DOI
65 Chen L, Luan S, Xia B et al (2018) Integrated analysis of HPV-mediated immune alterations in cervical cancer. Gynecol Oncol 149, 248-255   DOI
66 Lin M, Kim KR anb Ro J (2020) Gastric-type endocervical adenocarcinoma: review of clinicopathologic characteristics and recent advances. J Gynecol Res Obstet 6, 72-75
67 Maru Y, Tanaka N, Ebisawa K et al (2019) Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma. Cancer Sci 110, 2992-3005   DOI
68 Wu XG, Zhou CF, Zhang YM et al (2019) Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22, 397-410   DOI
69 Lohmussaar K, Boretto M and Clevers H (2020) Humanderived model systems in gynecological cancer research. Trends Cancer 6, 1031-1043   DOI
70 Sak K (2014) Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac J Cancer Prev 15, 8007-8019   DOI
71 Pappa KI, Kontostathi G, Makridakis M et al (2017) High resolution proteomic analysis of the cervical cancer cell lines secretome documents deregulation of multiple proteases. Cancer Genomics Proteomics 14, 507-521