• 제목/요약/키워드: molecular modification

검색결과 554건 처리시간 0.031초

Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila

  • Agarwal, Shivani;Mishra, Neeraj;Agarwal, Shivangi;Dixit, Aparna
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.419-426
    • /
    • 2010
  • Aeromonas hydrophila is a bacterial pathogen that infects a large number of eukaryotes, including humans. The UDP-galactose 4'-epimerase (GalE) catalyzes interconversion of UDP-galactose to UDP-glucose and plays a key role in lipopolysaccharide biosynthesis. This makes it an important virulence determinant, and therefore a potential drug target. Our earlier studies revealed that unlike other GalEs, GalE of A. hydrophila exists as a monomer. This uniqueness necessitated elucidation of its structure and active site. Chemical modification of the 6xHis-rGalE demonstrated the role of histidine residue in catalysis and that it did not constitute the substrate binding pocket. Loss of the 6xHis-rGalE activity and coenzyme fluorescence with thiol modifying reagents established the role of two distinct vicinal thiols in catalysis. Chemical modification studies revealed arginine to be essential for catalysis. Site-directed mutagenesis indicated Tyr149 and Lys153 to be involved in catalysis. Use of glycerol as a cosolvent enhanced the GalE thermostability significantly.

Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin

  • Ai, Ming-Qiang;Wang, Fang-Fang;Huang, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1361-1370
    • /
    • 2015
  • A blue laccase was purified from a white rot fungus of Trametes trogii, which was a monomeric protein of 64 kDa as determined by SDS-PAGE. The enzyme acted optimally at a pH of 2.2 to 4.5 and a temperature of 70℃ and showed high thermal stability, with a half-life of 1.6 h at 60℃. A broad range of substrates, including the non-phenolic azo dye methyl red, was oxidized by the laccase, and the laccase exhibited high affinity towards ABTS and syringaldazine. Moreover, the laccase was fairly metal-tolerant. A high-molecular-weight kraft lignin was effectively polymerized by the laccase, with a maximum of 6.4-fold increase in weight-average molecular weight, as demonstrated by gel permeation chromatography. Notable structural changes in the polymerized lignin were detected by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. This revealed an increase in condensed structures as well as carbonyl and aliphatic hydroxyl groups. Simultaneously, phenolic hydroxyl and methoxy groups decreased. These results suggested the potential use of the laccase in lignin modification.

Germline Modification and Engineering in Avian Species

  • Lee, Hong Jo;Lee, Hyung Chul;Han, Jae Yong
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.743-749
    • /
    • 2015
  • Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through longterm culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies.

Chemical Modification of the Biodegradative Threonine Dehydratase from Serratia marcescens with Arginine and Lysine Modification Reagents

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.124-128
    • /
    • 1995
  • Biodegradative threonine dehydratase purified from Serratia marcescens ATCC 25419 was inactivated by the arginine specific modification reagent, phenylglyoxal (PGO) and the lysine modification reagent, pyridoxal 5'-phosphate (PLP). The inactivation by PGO was protected by L-threonine and L-serine. The second order rate constant for the inactivation of the enzyme by PGO was calculated to be 136 $M^{-1}min^{-1}$. The reaction order with respect to PGO was 0.83. The inactivation of the enzyme by PGO was reversed upon addition of excess hydroxylamine. The inactivation of the enzyme by PLP was protected by L-threonine, L-serine, and a-aminobutyrate. The second order rate constant for the inactivation of the enzyme by PLP was 157 $M^{-1}min^{-1}$ and the order of reaction with respect to PLP was 1.0. The inactivation of the enzyme by PLP was reversed upon addition of excess acetic anhydride. Other chemical modification reagents such as N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoate), iodoacetamide, sodium azide, phenylmethyl sulfonylfluoride and diethylpyrocarbonate had no effect on the enzyme activity. These results suggest that essential arginine and lysine residues may be located at or near the active site.

  • PDF

Salsolinol, a Tetrahydroisoquinoline Catechol Neurotoxin, Induces Human Cu,Zn-superoxidie Dismutase Modificaiton

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.684-689
    • /
    • 2007
  • The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In the present study, we examined the pattern of human Cu,Zn-superoxide dismutase (SOD) modification elicited by salsolinol. When Cu,Zn-SOD was incubated with salsolinol, some protein fragmentation and some higher molecular weight aggregates were occurred. Salsolinol led to inactivation of Cu,Zn-SOD in a concentration-dependent manner. Free radical scavengers and catalase inhibited the salsolinol-mediated Cu,Zn-SOD modificaiton. Exposure of Cu,Zn-SOD to salsolinol led also to the generation of protein carbonyl compounds. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of salsolinol in the presence of Cu,Zn-SOD. Therefore, the results indicate that free radical may play a role in the modification and inactivation of Cu,Zn-SOD by salsolinol.

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian

  • Lee, Yool;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.

Modification of Carbohydrate Metabolism in Transgenic Potato

  • Heyer, Arnd G.
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.13-19
    • /
    • 2000
  • Carbohydrates serve three different principal functions in the metabolism of plants. They are the primary products of energy fixation, they are important transport metabolites, and they are deposited as structural or storage compounds. Modification of carbohydrate metabolism therefore covers approaches to modify yield, to change sink/source relationships and thereby alter the ratio of harvestable material, and to improve the quality of crop plants. The scope of this article is to summarize research done at the Max-Planck-Institute related to the first two fields and to present in some detail what we learned, when we established a new carbohydrate storage form in potato.

  • PDF

Characterization of Modified Peptides by Tandem Mass Spectrometry

  • Chang, Yoon-Seok;Jang, Jung-Suk
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.849-854
    • /
    • 1995
  • A series of biologically active phosphopeptides were synthesized and their behavior in tandem mass spectrometry have been investigated. The structure identifications of other unusual peptides such as sulphated, glycosylated, lipoidal, and backbone modified peptides have been carried out. For all tested peptides, the structural modification could be determined directly by measurement of the absolute molecular weight in combination with collision-induced-dissociation in tandem mass spectrometry.

  • PDF

Surface Modification of Polyurethane Using Sulfonated PEG Grafted Polyrotaxane for Improved Biocompatibility

  • Park Hyung Dal;Bae Jin Woo;Park Ki Dong;Ooya Tooru;Yui Nobuhiko;Jang Jun-Hyeog;Han Dong Keun;Shin Jung-Woog
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.73-80
    • /
    • 2006
  • Sulfonated poly(ethylene glycol) (PEG-$SO_{3}$) grafted polyrotaxanes (PRx-PEG-$SO_{3}$) were prepared in order to utilize the unique properties of PEG-$SO_{3}$ and the supramolecular structure of PRx, in which PEG-$SO_{3}$ grafted $\alpha$-cyclodextrins ($\alpha$-CDs) were threaded onto PEG segments in a PEG-b-poly(propylene glycol) (PPG)-b-PEG triblock copolymer (Pluronic) chain capped with bulky end groups. Some of the PRx-PEG-$SO_{3}$ demonstrated a higher anticoagulant activity in case of PRx-PEG-$SO_{3}$ (P 105), and compared with the control they showed a lower fibrinogen adsorption in PRx-PEG-$SO_{3}$ (F68) and a higher binding affinity with fibroblast growth factor. The obtained results suggested that polyrotaxane incorporated with PEG-$SO_{3}$ may be applicable to the surface modification of clinically used polymers, especially for blood/cell compatible medical devices.

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo;Choe, Moon-Kyung;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.145-152
    • /
    • 2012
  • Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.