• Title/Summary/Keyword: molecular distribution

Search Result 1,406, Processing Time 0.027 seconds

Frequency of Red Blood Cell Antigens According to Parent Ethnicity in Korea Using Molecular Typing

  • Shin, Kyung-Hwa;Lee, Hyun-Ji;Kim, Hyung-Hoi;Hong, Yun Ji;Park, Kyoung Un;Kim, Min Ju;Kwon, Jeong-Ran;Choi, Young-Sil;Kim, Jun Nyun
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.599-603
    • /
    • 2018
  • Frequencies of red blood cell (RBC) blood group antigens differ by ethnicity. Since the number of immigrants is increasing in Korea, RBC antigens should be assessed in children/youths with parents of different ethnicities to ensure safe transfusions. We investigated the frequency of RBC antigens, except for ABO and RhD, in 382 children and youths with parents having Korean and non-Korean ethnicities. Subjects were divided into those with ethnically Korean parents (Korean group; N=252) and those with at least one parent of non-Korean ethnicity (non-Korean group; N=130). The 37 RBC antigens were genotyped using the ID CORE XT system (Progenika Biopharma-Grifols, Bizkaia, Spain). The frequencies of the Rh (E, C, e, $hr^S$, and $hr^B$), Duffy ($Fy^a$), MNS ($Mi^a$), and Cartwright ($Yt^b$) antigens differed significantly between the two groups. Eight and 11 subjects in the Korean and non-Korean groups, respectively, exhibited negative expression of high-frequency antigens, whereas 14 subjects in the non-Korean group showed positive expression of low-frequency antigens. The frequency of RBC antigens has altered alongside demographic changes in Korea and might lead to changes in distribution of RBC antibodies that cause acute or delayed hemolytic transfusion reaction.

Synthesis of 125I-Labeled Gold Nanoparticles for a Molecular Imaging (분자영상용 방사성 금 나노입자 합성)

  • Son, Min Ju;Rho, Jong Kook;Lee, Joo-Sang;Jang, Beom-Su;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • Gold nanoparticles (GNPs) have led to the development of a new field in the diagnosis and treatment of diseases such as cancer. An efficient synthesis of gold nanoparticles within the range of 8~57 nm was established by ${\gamma}-ray$ irradiation. The good point of a radiation-based method is the production of gold nanoparticles with a higher concentration and narrower size distribution compared with conventional methods. The size of gold nanoparticles was controlled using two methods. : (i) varying the ${\gamma}-ray$ irradiation dose of 10 to 25 kGy and (ii) varying the concentration of $HAuCl_4$ solution from 4 to 40 mM. In addition, the GNPs were radiolabeled using $[^{125}I]NaI$ in a simple and fast manner with high yields. The produced gold nanoparticles were characterized using a transmission electron microscopy (TEM), a UV-visible spectrophotometer, and a radio-TLC imaging scanner. From these results, these radiolabeled GNPs can be applicable for a radioisotope tag of biomolecules.

Bartonella rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. in Fleas from Wild Rodents near the China-Kazakhstan Border

  • Yin, Xiaoping;Zhao, Shanshan;Yan, Bin;Tian, Yanhe;Ba, Teer;Zhang, Jiangguo;Wang, Yuanzhi
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.553-559
    • /
    • 2019
  • The Alataw Pass, near the Ebinur Lake Wetland (northwest of China) and Taldykorgan (east of Kazakhstan), is a natural habitat for wild rodents. To date, little has been done on the surveillance of Bartonella spp. and Wolbachia spp. from fleas in the region. Here we molecularly detected Bartonella spp. and Wolbachia spp. in wild rodent fleas during January and October of 2016 along the Alataw Pass-Kazakhstan border. A total of 1,706 fleas belonging to 10 species were collected from 6 rodent species. Among the 10 flea species, 4 were found to be positive for Wolbachia, and 5 flea species were positive for Bartonella. Molecular analysis indicated that i) B. rochalimae was firstly identified in Xenopsylla gerbilli minax and X. conforms conforms, ii) B. grahamii was firstly identified in X. gerbilli minax, and iii) B. elizabethae was firstly detected in Coptopsylla lamellifer ardua, Paradoxopsyllus repandus, and Nosopsyllus laeviceps laeviceps. Additionally, 3 Wolbachia endosymbionts were firstly found in X. gerbilli minax, X. conforms conforms, P. repandus, and N. laeviceps laeviceps. BLASTn analysis indicated 3 Bartonella species showed genotypic variation. Phylogenetic analysis revealed 3 Wolbachia endosymbionts were clustered into the non-Siphonaptera Wolbachia group. These findings extend our knowledge of the geographical distribution and carriers of B. rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. In the future, there is a need for China-Kazakhstan cooperation to strengthen the surveillance of flea-borne pathogens in wildlife.

Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19

  • Biswas, Subrata K.;Mudi, Sonchita R.
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.44.1-44.7
    • /
    • 2020
  • The severity of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), greatly varies from patient to patient. In the present study, we explored and compared mutation profiles of SARS-CoV-2 isolated from mildly affected and severely affected COVID-19 patients in order to explore any relationship between mutation profile and disease severity. Genomic sequences of SARS-CoV-2 were downloaded from Global Initiative on Sharing Avian Influenza Data (GISAID) database. With the help of Genome Detective Coronavirus Typing Tool, genomic sequences were aligned with the Wuhan seafood market pneumonia virus reference sequence and all the mutations were identified. Distribution of mutant variants was then compared between mildly and severely affected groups. Among the numerous mutations detected, 14408C>T and 23403A>G mutations resulting in RNA-dependent RNA polymerase (RdRp) P323L and spike protein D614G mutations, respectively, were found predominantly in severely affected group (>82%) compared with mildly affected group (<46%, p < 0.001). The 241C>T mutation in the non-coding region of the genome was also found predominantly in severely affected group (p < 0.001). The 3037C>T, a silent mutation, also appeared in relatively high frequency in severely affected group compared with mildly affected group, but the difference was not statistically significant (p = 0.06). We concluded that spike protein D614G and RdRp P323L mutations in SARS-CoV-2 are associated with severity of COVID-19. Further studies will be required to explore whether these mutations have any impact on the severity of disease.

Molecular characterization and expression of suppressor of cytokine signaling (SOCS) 1, 2 and 3 under acute hypoxia and reoxygenation in pufferfish, Takifugu fasciatus

  • Wang, Dan;Wen, Xin;Zhang, Xinyu;Hu, Yadong;Li, Xinru;Zhu, Wenxu;Wang, Tao;Yin, Shaowu
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1225-1235
    • /
    • 2018
  • Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge ($1.63{\pm}0.2mg/L$ DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery ($7.0{\pm}0.3mg/L$ of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.

Identification of Molecular Markers for Photoblastism in Weedy Rice

  • Lee, Hyun-Sook;Ahn, Sang-Nag;Sasaki, Kazuhiro;Chung, Nam-Jin;Choi, Kwan-Sam;Sato, Tadashi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • The objective of this study was to map gene/QTL for photoblastism in a weedy rice (photoblastic rice: PBR) using DNA markers. Light-induced effect on germination of seeds was compared among three accessions (Oryza sativa L.), PBR, Milyang 23 and Ilpum. Results showed that PBR seeds started to show photoblastism during seed development, different from Ilpum and Milyang 23. Frequency distribution of germination in the F4 lines from crosses between Ilpum and PBR and, Milyang 23 and PBR revealed bimodal distributions suggesting that photoblastism was controlled by a few genes. Bulked segregant analysis using $F_4$ populations derived from the above two crosses was conducted to identify gene/QTL for photoblastism. Two QTL were identified on chromosomes 1 and 12 explaining 11.2 and 12.8% of the phenotypic variance, respectively. Two QTL were further mapped between two SSR markers, RM8260 and RM246 on chromosome 1, and between RM270 and 1103 on chromosome 12. It is noteworthy that two QTL for photoblastism were colocalized with the QTL for seed dormancy reported in the previous QTL studies. The clustering of two genes for photoblastism and dormancy possibly indicates that these regions constitute rice phytochrome gene clusters related to germination. Because PBR has a low degree of dormancy, a pleiotropic effect of a single gene controlling dormancy and photoblastism can be ruled out. The linked markers will provide the foundation for positional cloning of the gene.

Seasonal Prevalence of Mosquitoes Collected from Light Traps in Gyeongsangnam Province, Republic of Korea (2013-2014)

  • KIM, Dong-Min;NOH, Byung-Eon;HEO, Jeonghoon;LEE, Wook-Gyo;YANG, Sung-Chan;LEE, Dong-Kyu
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.439-447
    • /
    • 2018
  • Adult mosquito surveillance was conducted from 2013 through 2014 at four cattle sheds, a wild bird refuge, and two residential areas located in Gyeongnam Province in the Republic of Korea. Adult mosquitoes were collected in black light traps from April 1, through November 30. Mosquito surveillance was conducted to figure out population densities of vector mosquitoes, possibly invaded mosquitoes and identify various virus infections at the selected sites. A total of 107,466 females comprising 14 species and 7 genera were collected from 2013 to 2014. The most common species collected were Culex tritaeniorhynchus Giles (63.8%), Anopheles sinensis s.l. (18.9%), Aedes vexans nipponii (Theobald) (7.7%), and Culex pipiens Coquillett (5.1%). Trap indices (TIs) varied widely for species over their range, due to geographical distribution and degree of association with rural and urban communities. The most collected An. sinensiss.l. and Cx. tritaeniorhynchus appeared at a cow shed in Hapcheon (TI 347.5) and a pigsty in Daejeo-1-dong, Busan (TI 1,040.8), respectively, due in part to their situation near breeding sites such as rice paddies. The bi-weekly population densities for mosquito species were variable for each of the years, apparently as a result of variable annual weather conditions. None of the mosquito species collected tested for the flavivirus including Japanese Encephalitis Virus, West Nile Virus, Dengue Virus, and Zika Virus infections by polymerase chain reaction (PCR) assay were positive.

Upregulation of FZD5 in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps by Epigenetic Modification

  • Kim, Jong-Yeup;Cha, Min-Ji;Park, Young-Seon;Kang, Jaeku;Choi, Jong-Joong;In, Seung Min;Kim, Dong-Kyu
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.345-355
    • /
    • 2019
  • Eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most challenging problems in clinical rhinology. FZD5 is a receptor for Wnt5A, and its complex with Wnt5A contributes to activating inflammation and tissue modification. Nasal polyps and eosinophil/non-eosinophil counts are reported to be directly correlated. This study investigated the expression and distribution of FZD5, and the role of eosinophil infiltration and FZD5 in eosinophilic CRSwNP pathogenesis. The prognostic role of eosinophil levels was evaluated in seven patients with CRSwNP. Fifteen patients with CRS were classified based on the percentage of eosinophils in nasal polyp tissue. Methylated genes were detected using methylCpG-binding domain sequencing, and qRT-PCR and immunohistochemistry were used to detect FZD5 expression in nasal polyp tissue samples. The results showed that mRNA expression of FZD5 was upregulated in nasal polyps. FZD5 expression was significantly higher in nasal polyp samples from patients with eosinophilic CRSwNP than in those from patients with non-eosinophilic CRSwNP, as indicated by immunohistochemistry. Furthermore, inflammatory cytokine levels were higher in eosinophilic CRSwNP-derived epithelial cells than in normal tissues. In conclusion, FZD5 expression in nasal mucosal epithelial cells is correlated with inflammatory cells and might play a role in the pathogenesis of eosinophilic CRSwNP.

No Association between Polymorphisms of Vitamin D and Oxytocin Receptor Genes and Autistic Spectrum Disorder in a Sample of Turkish Children

  • Bozdogan, Sevcan Tug;Kutuk, Meryem Ozlem;Tufan, Evren;Altintas, Zuhal;Temel, Gulhan Orekici;Toros, Fevziye
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.415-421
    • /
    • 2018
  • Objective: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social skills and communication with repetitive behaviors. Etiology is still unclear although it is thought to develop with interaction of genes and environmental factors. Oxytocin has extensive effects on intrauterine brain development. Vitamin D, affects neural development and differentiation and contributes to the regulation of around 900 genes including oxytocin receptor gene. In the present study, the contribution of D vitamin receptor and oxytocin receptor gene polymorphisms in the development of ASD in Turkish community was investigated. To our knowledge, this is the first study examining these two associated genes together in the literature. Methods: Eighty-five patients diagnosed with ASD according to DSM-5 who were referred to outpatient clinics of Child and Adolescent Psychiatry of Başkent University and Mersin University and 52 healthy, age and gender-matched controls were included in the present study. Vitamin D receptor gene rs731236 (Taq1), rs2228570 (Fok1), rs1544410 (Bsm1), rs7975232 (Apa1) polymorphisms and oxytocin receptor gene rs1042778 and rs2268493 polymorphisms were investigated using real time polymerase chain reaction method. Results: No significant difference between groups in terms of distribution of genotype and alleles in each of polymorphisms for these genes could be found. Conclusion: Knowledge of genes and polymorphisms associated with the development of ASD may be beneficial for early diagnosis and future treatment. Further studies with larger populations are required to demonstrate molecular pathways which may play part in the development of ASD in Turkey.

siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris

  • Lan, Han-hong;Wang, Cui-mei;Chen, Shuang-shuang;Zheng, Jian-ying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.508-520
    • /
    • 2019
  • Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.