Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2019.0055

siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris  

Lan, Han-hong (School of Biological Sciences and Biotechnology, Minnan Normal University)
Wang, Cui-mei (School of Biological Sciences and Biotechnology, Minnan Normal University)
Chen, Shuang-shuang (School of Biological Sciences and Biotechnology, Minnan Normal University)
Zheng, Jian-ying (School of Biological Sciences and Biotechnology, Minnan Normal University)
Publication Information
The Plant Pathology Journal / v.35, no.5, 2019 , pp. 508-520 More about this Journal
Abstract
Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.
Keywords
CymMV; ORSV; Phalaenopsis equestris; siRNAs; sRNA-seq;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hong, W., Qian, D., Sun, R., Jiang, L., Wang, Y., Wei, C., Zhang, Z. and Li, Y. 2015. OsRDR6 plays role in host defense against double-stranded RNA virus, Rice Dwarf Phytoreovirus. Sci Rep. 5:11324.   DOI
2 Jiang, L., Qian, D., Zheng, H., Meng, L.-Y, Chen, J., Le, W.-J., Zhou, T., Zhou, Y.-J., Wei, C.-H. and Li, Y. 2012. RNAdependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus. Virus Res. 163:512-519.   DOI
3 Jones-Rhoades, M. W., Bartel, D. P. and Bartel, B. 2006. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57:19-53.   DOI
4 Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K. and Kapoor, S. 2008. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451.   DOI
5 Kim, H. S. and Delaney, T. P. 2002. Arabidopsis SON1 is an FBox protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14:1469-1482.   DOI
6 Koh, K. W., Lu, H.-C. and Chan, M.-T. 2014. Virus resistance in orchids. Plant Sci. 228:26-38.   DOI
7 Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I. and Simon, R. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1-7.   DOI
8 Lacombe, S., Bangratz, M., Vignols, F. and Brugidou, C. 2010. The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. Plant J. 61:371-382.   DOI
9 Lan, H., Hong, X., Huang, R., Lin, X., Li, Q., Li, K. and Zhou, T. 2018a. RNA interference-mediated knockdown and virusinduced suppression of Troponin C gene adversely affect the behavior or fitness of the green rice leafhopper, Nephotettix cincticeps. Arch. Insect Biochem. Physiol. 97:e21438.   DOI
10 Lan, H., Chen, H., Liu, Y., Jiang, C., Mao, Q., Jia, D., Chen, Q. and Wei, T. 2015. Small interfering RNA pathway modulates initial viral infection in midgut epithelium of insect after ingestion of virus. J. Virol. 90:917-929.   DOI
11 McHale, L., Tan, X., Koehl, P. and Michelmore, R. W. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7:212.
12 Liu, B., Chen, Z., Song, X., Liu, C., Cui, X., Zhao, X., Fang, J., Xu, W., Zhang, H., Wang, X., Chu, C., Deng, X., Xue, Y. and Cao, X. 2007. Oryza sativa Dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705-2718.   DOI
13 Liu, C., Chen, Z., Hu, Y., Ji, H., Yu, D., Shen, W., Li, S., Ruan, J., Bu, W. and Gao, S. 2018. Complemented palindrome small RNAs first discovered from SARS coronavirus. Genes 9:442.   DOI
14 Mandadi, K. K. and Scholthof, K.-B. G. 2015. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27:71-85.   DOI
15 Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'-terminal nucleotide. Cell 133:116-127.   DOI
16 Mitter, N., Koundal, V., Williams, S. and Pappu, H. 2013. Differential expression of Tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS ONE 8:e76276.   DOI
17 Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C. and Burgyan, J. 2005. Plant virus-derived small interfering RNAs originate predominantly from highly structured singlestranded viral RNAs. J. Virol. 79:7812-7818.   DOI
18 Li, R., Gao, S., Berendsen, S., Fei, Z. and Ling, K.-S. 2015. Complete genome sequence of a novel genotype of squash mosaic virus infecting squash in Spain. Genome Announc. 3:e01583-14.
19 Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699.   DOI
20 Lan, Y., Li, Y., E. Z., Sun, F., Du, L., Xu, Q., Zhou, T., Zhou, Y. and Fan, Y. 2018b. Identification of virus-derived siRNAs and their targets in RBSDV-infected rice by deep sequencing. J. Basic Microbiol. 58:227-237.   DOI
21 Li, R., Gao, S., Fei, Z. and Ling, K.-S. 2013. Complete genome sequence of a new tobamovirus naturally infecting tomatoes in Mexico. Genome Announc. 1:e00794-13.
22 Li, R., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z. and Ling, K.-S. 2012. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE 7:e37127.   DOI
23 Li, Y., Deng, C., Shang, Q., Zhao, X., Liu, X. and Zhou, Q. 2016. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants. Arch. Virol. 161:455-458.   DOI
24 Sharma, N., Sahu, P. P., Puranik, S. and Prasad, M. 2013. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol. Biotechnol. 55:63-77.   DOI
25 Morris, E. R. and Walker, J. C. 2003. Receptor-like protein kinases: the keys to response. Curr. Opin. Plant Biol. 6:339-342.   DOI
26 Niu, S.-C., Xu, Q., Zhang, G.-Q., Zhang, Y.-Q., Tsai, W.-C., Hsu, J.-L., Liang, C.-K., Luo, Y.-B. and Liu, Z.-J. 2016. De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris. Sci. Data 3:160083.   DOI
27 Niu, X., Sun, Y., Chen, Z., Li, R., Padmanabhan, C., Ruan, J., Kreuze, J. F., Ling, K., Fei, Z. and Gao, S. 2017. Using small RNA-seq data to detect siRNA duplexes induced by plant viruses. Genes 8:163.   DOI
28 Prabha, K., Baranwal, V. K. and Jain, R. K. 2013. Applications of next generation high throughput sequencing technologies in characterization, discovery and molecular interaction of plant viruses. Indian J. Virol. 24:157-165.   DOI
29 Rubio, M., Rodriguez-Moreno, L., Ballester, A. R., de Moura, M. C., Bonghi, C., Candresse, T. and Martinez-Gomez, P. 2015. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol. Plant Pathol. 16:164-176.   DOI
30 Sinha, P., Pazhamala, L. T., Singh, V. K., Saxena, R. K., Krishnamurthy, L., Azam, S., Khan, A. W. and Varshney, R. K. 2016. Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6:1065.   DOI
31 Vaucheret, H. 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20:759-771.   DOI
32 Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45-66.   DOI
33 Wang, F., Sun, Y., Ruan, J., Chen, R., Chen, X., Chen, C., Kreuze, J. F., Fei, Z., Zhu, X. and Gao, S. 2016. Using small RNA deep sequencing data to detect human viruses. BioMed Res. Int. 2016:2596782.
34 Xu, D. and Zhou, G. 2017. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol. J. 14:27.   DOI
35 Wong, S. M., Chng, C. G., Lee, Y. H., Tan, K. and Zettler, F. W. 1994. Incidence of cymbidium mosaic and odontoglossum ringspot viruses and their significance in orchid cultivation in Singapore. Crop Prot. 13:235-239.   DOI
36 Wu, Q., Luo, Y., Lu, R., Lau, N., Lai, E. C., Li, W.-X. and Ding, S.-W. 2010. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. U. S. A. 107:1606-1611.   DOI
37 Xia, Z., Peng, J., Li, Y., Chen, L., Li, S., Zhou, T. and Fan, Z. 2014. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing. PLoS ONE 9:e97013.   DOI
38 Zettler, F. W., Ko, N. J., Wisler, G. C., Elliott, M. S. and Wong, S. M. 1990. Viruses of orchids and their control. Plant Dis. 74:621-626.   DOI
39 Yan, F., Zhang, H., Adams, M. J., Yang, J., Peng, J., Antoniw, J. F., Zhou, Y. and Chen, J. 2010. Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep sequencing. Arch. Virol. 155:935-940.   DOI
40 Yang, J., Zheng, S.-L., Zhang, H.-M., Liu, X.-Y., Li, J., Li, J.-M. and Chen, J.-P. 2014. Analysis of small RNAs derived from Chinese wheat mosaic virus. Arch. Virol. 159:3077-3082.   DOI
41 Zheng, Y., Gao, S., Padmanabhan, C., Li, R., Galvez, M., Gutierrez, D., Fuentes, S., Ling, K.-S., Kreuze, J. and Fei, Z. 2017. VirusDetect: an automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 500:130-138.   DOI
42 Greber, U. F. and Way, M. 2006. A superhighway to virus infection. Cell 124:741-754.   DOI
43 Ding, S.-W. 2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632-644.   DOI
44 Baulcombe, D. 2006. RNA silencing in plants. Nature 431:356-363.   DOI
45 Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H.-S., Vazquez, F., Robertson, D., Meins, F. Jr., Hohn, T. and Pooggin, M. M. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34:6233-6246.   DOI
46 Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.-C., Liu, K.-W., Chen, L.-J., He, Y., Xu, Q., Bian, C., Zheng, Z., Sun, F., Liu, W., Hsiao, Y.-Y., Pan, Z.-J., Hsu, C.-C., Yang, Y.-P., Hsu, Y.-C., Chuang, Y.-C., Dievart, A., Dufayard, J.-F., Xu, X., Wang, J.-Y., Wang, J., Xiao, X.-J., Zhao, X.-M., Du, R., Zhang, G.-Q., Wang, M., Su, Y.-Y., Xie, G.-C., Liu, G.-H., Li, L.-Q., Huang, L.-Q., Luo, Y.-B., Chen, H.-H., Van de Peer, Y. and Liu, Z.-J. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47:65-72.   DOI
47 Dai, X. and Zhao, P. X. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39:W155-W159.   DOI
48 Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C. and Voinnet, O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68-71.   DOI
49 Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., Isono, E., Schumacher, K. and Genschik, P. 2012. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl. Acad. Sci. U. S. A. 109:15942-15946.   DOI
50 DeYoung, B. J. and Innes, R. W. 2006. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7:1243-1249.   DOI
51 Gouin, E., Welch, M. D. and Cossart, P. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8:35-45.   DOI
52 Donaire, L., Barajas, D., Martinez-García, B., Martinez-Priego, L., Pagan, I. and Llave, C. 2008. Structural and genetic requirements for the biogenesis of Tobacco rattle virus-derived small interfering RNAs. J. Virol. 82:5167-5177.   DOI
53 Earley, K., Smith, M. R., Weber, R., Gregory, B. D. and Poethig, R. S. 2010. An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15.   DOI
54 Gibbs, A. 2000. Viruses of orchids in Australia: their identification, biology and control. Aust. Orchid Rev. 65:10-21.
55 Gruenheid, S. and Finlay, B. B. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422:775-781.   DOI
56 Ho, T., Wang, H., Pallett, D. and Dalmay, T. 2007. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett. 581:3267-3272.   DOI