DOI QR코드

DOI QR Code

No Association between Polymorphisms of Vitamin D and Oxytocin Receptor Genes and Autistic Spectrum Disorder in a Sample of Turkish Children

  • Bozdogan, Sevcan Tug (Department of Medical Genetics, School of Medicine, Cukurova University) ;
  • Kutuk, Meryem Ozlem (Department of Child and Adolescent Psychiatry, School of Medicine, Baskent University) ;
  • Tufan, Evren (Department of Child and Adolescent Psychiatry, School of Medicine, Abant Izzet Baysal University) ;
  • Altintas, Zuhal (Department of Medical Genetics, School of Medicine, Mersin University) ;
  • Temel, Gulhan Orekici (Department of Biostatistics and Medical Informatics, School of Medicine, Mersin University) ;
  • Toros, Fevziye (Department of Child and Adolescent Psychiatry, School of Medicine, Mersin University)
  • Received : 2017.05.09
  • Accepted : 2017.07.08
  • Published : 2018.11.30

Abstract

Objective: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social skills and communication with repetitive behaviors. Etiology is still unclear although it is thought to develop with interaction of genes and environmental factors. Oxytocin has extensive effects on intrauterine brain development. Vitamin D, affects neural development and differentiation and contributes to the regulation of around 900 genes including oxytocin receptor gene. In the present study, the contribution of D vitamin receptor and oxytocin receptor gene polymorphisms in the development of ASD in Turkish community was investigated. To our knowledge, this is the first study examining these two associated genes together in the literature. Methods: Eighty-five patients diagnosed with ASD according to DSM-5 who were referred to outpatient clinics of Child and Adolescent Psychiatry of Başkent University and Mersin University and 52 healthy, age and gender-matched controls were included in the present study. Vitamin D receptor gene rs731236 (Taq1), rs2228570 (Fok1), rs1544410 (Bsm1), rs7975232 (Apa1) polymorphisms and oxytocin receptor gene rs1042778 and rs2268493 polymorphisms were investigated using real time polymerase chain reaction method. Results: No significant difference between groups in terms of distribution of genotype and alleles in each of polymorphisms for these genes could be found. Conclusion: Knowledge of genes and polymorphisms associated with the development of ASD may be beneficial for early diagnosis and future treatment. Further studies with larger populations are required to demonstrate molecular pathways which may play part in the development of ASD in Turkey.

Keywords

Acknowledgement

Supported by : TUBITAK (The Scientific and Technological Research Council of Turkey)

References

  1. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Report 2015;(87):1-20.
  2. Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 2014;15:133-141. https://doi.org/10.1038/nrg3585
  3. Tchaconas A, Adesman A. Autism spectrum disorders: a pediatric overview and update. Curr Opin Pediatr 2013;25:130-144. https://doi.org/10.1097/MOP.0b013e32835c2b70
  4. Szatmari P. Is autism, at least in part, a disorder of fetal programming? Arch Gen Psychiatry 2011;68:1091-1092. https://doi.org/10.1001/archgenpsychiatry.2011.99
  5. Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry 2010;167:1349-1356. https://doi.org/10.1176/appi.ajp.2010.09101470
  6. Gupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry 2007;61:429-437. https://doi.org/10.1016/j.biopsych.2006.06.020
  7. Freitag CM. The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 2007;12:2-22. https://doi.org/10.1038/sj.mp.4001896
  8. Veenstra-VanderWeele J, Cook EH Jr. Molecular genetics of autism spectrum disorder. Mol Psychiatry 2004;9:819-832. https://doi.org/10.1038/sj.mp.4001505
  9. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 2006;11:1, 18-28. https://doi.org/10.1038/sj.mp.4001751
  10. Woodbury-Smith M, Bilder DA, Morgan J, Jerominski L, Darlington T, Dyer T, et al. Combined genome-wide linkage and targeted association analysis of head circumference in autism spectrum disorder families. J Neurodev Disord 2017;9:5. https://doi.org/10.1186/s11689-017-9187-8
  11. Hamedani SY, Gharesouran J, Noroozi R, Sayad A, Omrani MD, Mir A, et al. Ras-like without CAAX 2 (RIT2): a susceptibility gene for autism spectrum disorder. Metab Brain Dis 2017;32:751-755. https://doi.org/10.1007/s11011-017-9969-4
  12. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008;9:341-355. https://doi.org/10.1038/nrg2346
  13. Hens K, Peeters H, Dierickx K. The ethics of complexity. Genetics and autism, a literature review. Am J Med Genet B Neuropsychiatr Genet 2016;171B:305-316.
  14. Gentile I, Zappulo E, Militerni R, Pascotto A, Borgia G, Bravaccio C. Etiopathogenesis of autism spectrum disorders: fitting the pieces of the puzzle together. Med Hypotheses 2013;81:26-35. https://doi.org/10.1016/j.mehy.2013.04.002
  15. Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014;28:2398-2413. https://doi.org/10.1096/fj.13-246546
  16. Lee YJ, Oh SH, Park C, Hong M, Lee AR, Yoo HJ, et al. Advanced pharmacotherapy evidenced by pathogenesis of autism spectrum disorder. Clin Psychopharmacol Neurosci 2014;12:19-30. https://doi.org/10.9758/cpn.2014.12.1.19
  17. Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005;19:2685-2695. https://doi.org/10.1210/me.2005-0106
  18. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2008;22:982-1001. https://doi.org/10.1096/fj.07-9326rev
  19. Goksugur SB, Tufan AE, Semiz M, Gunes C, Bekdas M, Tosun M, et al. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr Int 2014;56:515-519. https://doi.org/10.1111/ped.12286
  20. Celik G, Tas D, Tahiroglu A, Avci A, Yuksel B, Cam P. Vitamin D deficiency in obsessive-compulsive disorder patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: a case control study. Noro Psikiyatr Ars 2016;53:33-37. https://doi.org/10.5152/npa.2015.8763
  21. Focker M, Antel J, Ring S, Hahn D, Kanal O, Ozturk D, et al. Vitamin D and mental health in children and adolescents. Eur Child Adolesc Psychiatry 2017. doi: 10.1007/s00787-017-0949-3. [Epub ahead of print]
  22. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 2004;25:150-176. https://doi.org/10.1016/j.yfrne.2004.05.001
  23. Carter CS. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 1998;23:779-818. https://doi.org/10.1016/S0306-4530(98)00055-9
  24. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci 2004;7:1048-1054. https://doi.org/10.1038/nn1327
  25. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 2007;62:1187-1190. https://doi.org/10.1016/j.biopsych.2007.03.025
  26. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin improves “mind-reading” in humans. Biol Psychiatry 2007;61:731-733. https://doi.org/10.1016/j.biopsych.2006.07.015
  27. Guastella AJ, Mitchell PB, Dadds MR. Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 2008;63:3-5. https://doi.org/10.1016/j.biopsych.2007.06.026
  28. Guastella AJ, Mitchell PB, Mathews F. Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 2008;64:256-258. https://doi.org/10.1016/j.biopsych.2008.02.008
  29. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 2003;28:193-198. https://doi.org/10.1038/sj.npp.1300021
  30. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, et al. Oxytocin increases retention of social cognition in autism. Biol Psychiatry 2007;61:498-503. https://doi.org/10.1016/j.biopsych.2006.05.030
  31. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 2010;107:4389-4394. https://doi.org/10.1073/pnas.0910249107
  32. Toell A, Polly P, Carlberg C. All natural DR3-type vitamin D response elements show a similar functionality in vitro. Biochem J 2000;352:301-309. https://doi.org/10.1042/bj3520301
  33. Prufer K, Jirikowski GF. 1.25-Dihydroxyvitamin D3 receptor is partly colocalized with oxytocin immunoreactivity in neurons of the male rat hypothalamus. Cell Mol Biol (Noisy-legrand) 1997;43:543-548.
  34. Ma WJ, Hashii M, Munesue T, Hayashi K, Yagi K, Yamagishi M, et al. Non-synonymous single-nucleotide variations of the human oxytocin receptor gene and autism spectrum disorders: a case-control study in a Japanese population and functional analysis. Mol Autism 2013;4:22. https://doi.org/10.1186/2040-2392-4-22
  35. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005;58:74-77. https://doi.org/10.1016/j.biopsych.2005.03.013
  36. Lerer E, Levi S, Salomon S, Darvasi A, Yirmiya N, Ebstein RP. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry 2008;13:980-988. https://doi.org/10.1038/sj.mp.4002087
  37. Campbell DB, Datta D, Jones ST, Batey Lee E, Sutcliffe JS, Hammock EA, et al. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J Neurodev Disord 2011;3:101-112. https://doi.org/10.1007/s11689-010-9071-2
  38. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, et al. Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry 2008;63:911-916. https://doi.org/10.1016/j.biopsych.2007.11.015
  39. Coskun S, Simsek S, Camkurt MA, Cim A, Celik SB. Association of polymorphisms in the vitamin D receptor gene and serum 25-hydroxyvitamin D levels in children with autism spectrum disorder. Gene 2016;588:109-114. https://doi.org/10.1016/j.gene.2016.05.004
  40. Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Sconberg JL, Schmidt LC, et al. Selected vitamin D metabolic gene variants and risk for autism spectrum disorder in the CHARGE Study. Early Hum Dev 2015;91:483-489. https://doi.org/10.1016/j.earlhumdev.2015.05.008
  41. Ayaz AB, Karkucak M, Ayaz M, Gokce S, Kayan E, Guler EE, et al. Oxytocin system social function impacts in children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015;168:609-616. https://doi.org/10.1002/ajmg.b.32343
  42. Sasaki T, Hashimoto K, Oda Y, Ishima T, Kurata T, Takahashi J, et al. Decreased levels of serum oxytocin in pediatric patients with attention deficit/hyperactivity disorder. Psychiatry Res 2015;228:746-751. https://doi.org/10.1016/j.psychres.2015.05.029
  43. Yan J, Feng J, Craddock N, Jones IR, Cook EH Jr, Goldman D, et al. Vitamin D receptor variants in 192 patients with schizophrenia and other psychiatric diseases. Neurosci Lett 2005;380:37-41. https://doi.org/10.1016/j.neulet.2005.01.018
  44. Sanders S. Multiplex-simplex comparisons. In: Volkmar FR, editor. Encyclopedia of autism spectrum disorders. New York:Springer;2013. p.1960.
  45. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington, VA:American Psychiatric Association;2013. 947 p.
  46. Incekas Gassaloglu S, Baykara B, Avcil S, Demiral Y. Validity and reliability analysis of Turkish version of childhood autism rating scale. Turk Psikiyatri Derg 2016;27:266-274.
  47. Gokler B, Unal F, Pehlivanturk B, Kultur EC, Akdemir D, Taner Y. Reliability and validity of schedule for affective disorders and schizophrenia for school age children-present and lifetime version-Turkish version (K-SADS-PL-T). Turk J Child Adolesc Ment Health 2004;11:109-116.
  48. Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform 2012;10:117-122. https://doi.org/10.5808/GI.2012.10.2.117
  49. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006;38:209-213. https://doi.org/10.1038/ng1706
  50. Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003;19:149-150. https://doi.org/10.1093/bioinformatics/19.1.149
  51. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2008 Principal Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders--Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveill Summ 2012;61:1-19.
  52. Fombonne E. The prevalence of autism. JAMA 2003;289:87-89. https://doi.org/10.1001/jama.289.1.87
  53. Schaaf CP, Zoghbi HY. Solving the autism puzzle a few pieces at a time. Neuron 2011;70:806-808. https://doi.org/10.1016/j.neuron.2011.05.025
  54. Kocovska E, Fernell E, Billstedt E, Minnis H, Gillberg C. Vitamin D and autism: clinical review. Res Dev Disabil 2012;33:1541-1550. https://doi.org/10.1016/j.ridd.2012.02.015
  55. Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism 2014;5:48. https://doi.org/10.1186/2040-2392-5-48
  56. Francis SM, Kim SJ, Kistner-Griffin E, Guter S, Cook EH, Jacob S. ASD and genetic associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR. Front Neurosci 2016;10:516.
  57. Liu X, Kawamura Y, Shimada T, Otowa T, Koishi S, Sugiyama T, et al. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 2010;55:137-141. https://doi.org/10.1038/jhg.2009.140
  58. Hvolgaard Mikkelsen S, Olsen J, Bech BH, Obel C. Parental age and attention-deficit/hyperactivity disorder (ADHD). Int J Epidemiol 2017;46:409-420.
  59. McGrath JJ, Petersen L, Agerbo E, Mors O, Mortensen PB, Pedersen CB. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry 2014;71:301-309. https://doi.org/10.1001/jamapsychiatry.2013.4081