• Title/Summary/Keyword: mold tool

Search Result 429, Processing Time 0.023 seconds

Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof (볼록한 지붕을 갖는 이방성 고분자 입자의 곡률반경 제어를 위한 마이크로몰딩 기술)

  • Jeong, Jae-Min;Son, Jung-Woo;Choi, Chang-Hyung;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.295-300
    • /
    • 2012
  • Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from $20{\mu}m$ to $70{\mu}m$ with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.

A Study on the Optimum Design of Power Vice-Strengthening Device (파워바이스 증력장치 최적설계에 관한 연구)

  • Lee, Gyung-Il;Jung, Yoon-soo;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

A Study on Material thickness variation of the circle formming shape for installing PCB (PCB 장착을 위한 원형 포밍형상의 재료 두께 변형에 관한 연구)

  • Lee, Chun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3667-3671
    • /
    • 2015
  • Through experiment that does not cause wrinkles in the forming process for the primary purpose for install PCB(Printed circuit board) the thickness variation of the material was investigated. Experimental results was showed that the forming height of the first process had Influence Material thickness variation in the second process, in the first process, the Entrance corner of the die must have round of the product height of 50%, and The height of forming should be as high as the thickness of the material than the original forming. Also as do implement the forming shape in the first process, the thickness of the material is thinned to 85%, Restriking in the second process was that The thickness of the material is thinned to 80%. Therefore, In order to implement a precise shape, Thinking that the material thinning, The die was maintain the shape of the original product, and It was obtain the effect of the compression that the punch is to be longer, as the sum of more than 20% of the material thickness in the depth of the original product.

Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining (다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계)

  • Shin, Chang-Yeul;Lee, Jae-Jin;Mun, Ji-Hun;Kwon, Soon-Deok;Yang, Min-Seok;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.

Reconstruction of the Korean Asbestos Job Exposure Matrix

  • Kang, Dongmug;Jung, Saemi;Kim, Yun-Ji;Kim, Juyoung;Choi, Sangjun;Kim, Se Yeong;Kim, Youngki
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.74-95
    • /
    • 2021
  • Background: A job-exposure matrix (JEM) is an important surrogate indicator to evaluate past exposure levels. Although a Korean asbestos JEM has been constructed previously, this JEM includes only a few industrial and occupational groups. This study aimed to reconstruct the JEM by integrating the latest organized data to improve its utility. Methods: We used recent Korean standard industry and occupation codes and extracted 36 articles from a systematic literature review to initiate the reconstruction of the previous Korean asbestos JEM. The resulting data consisted of 141 combinations of industrial and occupational groups. Data from the Netherlands's JEM were also reviewed and categorized into 70 industrial and 117 occupational groups by matching with the Korean data. We also utilized Germany's data, which consisted of 10 industrial and 14 occupational groups. Results: The reconstructed Korean asbestos JEM had 141 combinations of industries and occupations. The time periods are from the 1980s to the 2000s in 10-year intervals. Most of the data were distributed between the 1990s and the 2000s. Occupations with high exposure to asbestos included knitting and weaving machine operators, automobile mechanics or assemblers, ship mechanics or assemblers, mineral ore and stone products processing mechanics, and metal casting machine operators or mold makers. Conclusions: The reconstructed Korean asbestos JEM has expanded the type and duration of the occupational groups of the previous JEM and can serve as an important reference tool for evaluating asbestos exposure and designing compensation and prevention policies in Korea.

Bacillus siamensis 3BS12-4 Extracellular Compounds as a Potential Biological Control Agent against Aspergillus flavus

  • Patapee Aphaiso;Polson Mahakhan;Jutaporn Sawaengkaew
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1671-1679
    • /
    • 2024
  • Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, β-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.

The Application of an EU REACH Protocol to the Occupational Exposure Assessment of Methanol: Targeted Risk Assessment (메탄올 작업장 노출 평가에의 EU REACH 프로토콜 적용: Targeted Risk Assessment)

  • Ra, Jin-Sung;Song, Moon Hwan;Choe, Eun Kyung
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.432-445
    • /
    • 2021
  • Background: The European Centre for Ecotoxicology and Toxicology of Chemicals' Targeted Risk Assessment (ECETOC TRA) tool has been recognized by EU REACH as a preferred approach for calculating worker health risks from chemicals. Objectives: The applicability of the ECETOC TRA to occupational exposure estimation from industrial uses of methanol was studied by inputting surveyed and varied parameters for TRA estimation as well as through comparison with measured data. Methods: Information on uses of methanol was collected from seven working environment monitoring reports along with the measured exposure data. Input parameters for TRA estimation such as operating conditions (OCs), risk management measures (RMMs) and process categories (PROCs) were surveyed. To compare with measured exposures, parameters from the surveyed conditions of ventilation but no use of respiratory protection were applied. Results: PROCs 4, 5, 8a, 10, and 15 were assigned to ten uses of methanol. The uses include as a solvent for manufacturing sun cream, surfactants, dyestuffs, films and adhesives. Methanol was also used as a component in a release agent, hardening media and mold wash for cast products as well as a component of hard-coating solution and a viscosity-controlling agent for manufacturing glass lenses. PROC 8a and PROC 10 of a cast product manufacturer without LEV (local exhaust ventilation) and general ventilation as well as no respiratory protection resulted in the highest exposure to methanol. Assuming the identical worst OCs and RMMs for all uses, exposures from PROC 5, 8a, and 10 were the same and the highest followed by PROC 4 and 15. The estimation resulted in higher exposures in nine uses except one use where measured exposure approximated exposures without RMMs. Conclusions: The role of ECETOC TRA as a conservative exposure assessment tool was confirmed by comparison with measured data. Moreover, it can guide which RMMs should be applied for the safe use of methanol.

Molecular Analysis of Pathogenic Molds Isolated from Clinical Specimen (임상검체에서 분리된 병원성 사상균의 분자생물학적 분석)

  • Lee, Jang Ho;Kwon, Kye Chul;Koo, Sun Hoe
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.229-236
    • /
    • 2020
  • Sixty-five molds isolated from clinical specimens were included in this study. All the isolates were molds that could be identified morphologically, strains that are difficult to identify because of morphological similarities, and strains that require species-level identification. PCR and direct sequencing were performed to target the internal transcribed spacer (ITS) region, the D1/D2 region, and the β-tubulin gene. Comparative sequence analysis using the GenBank database was performed using the basic local alignment search tool (BLAST) algorithm. The fungi identified morphologically to the genus level were 67%. Sequencing analysis was performed on 62 genera and species level of the 65 strains. Discrepancies were 14 (21.5%) of the 65 strains between the results of phenotypic and molecular identification. B. dermatitidis, T. marneffei, and G. argillacea were identified for the first time in Korea using the DNA sequencing method. Morphological identification is a very useful method in terms of the reporting time and costs in cases of frequently isolated and rapid growth, such as Aspergillus. When molecular methods are employed, the cost and clinical significance should be considered. On the other hand, the molecular identification of molds can provide fast and accurate results.

Changes in Allergenicity and Quality of Nuruk during Fermentation (전통 누룩 발효과정 중 품질 및 항원성 변화)

  • Lee, Hyo-Hyung;Lee, Jin-Hyeong;Ko, Yu-Jin;Park, Mi-Hwa;Lee, Jeong-Ok;Ryu, Chung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • Wheat is the most widely cultivated cereal and an important source of dietary protein worldwide. Wheat allergy, defined as an adverse immunologic reaction to wheat, encompasses a broad spectrum of disorders with different pathomechanisms and clinical manifestation. The Nuruk, a traditional Korean Koji for brewing, was made with wheat flour and fermenting microbes such as bacteria, yeast and mold. The strains grown on Nuruk secrete various enzymes as amylase and protease. By the activation of such enzymes, starch and proteins in Nuruk are hydrolyzed to sugar and amino acid. Therefore, it is supposed to reduce allergic proteins in wheat. To study quality properties and degradation degree of allergenicity in Nuruk by fermentation, we investigated the changes of general ingredients and allergenicity in Nuruk during fermentation. Moisture contents was decreased from 24.2% to 13.6% during fermentation. Crude lipid and protein contents were gradually increased during fermentation. After 15 days of fermentation, reducing sugar and total sugar contents were reached its maximum level, and they were 27.45% and 39.00%, respectively. Acid and neutral protease activity were significantly increased during fermentation, but alkaline protease activity was not detected. ${\alpha}$-amylase activity was gradually increased and showed maximum level about 2,833.00 U/g after 15 days of fermentation. Glucoamylase activity was the highest level about 497.9 U/g after 10 days of fermentation. The increase of these proteolytic and saccharogenic enzyme activities will provide efficient condition for production of rice wine. Also, protein fractions were isolated from Nuruk, and degradation of these proteins during fermentation were confirmed by SDS-PAGE. IgE immunoblotting using patient's sera with wheat allergy was performed to confirm allergenic protein in Nuruk. These results as fermentation of Nuruk will provide a useful tool for developing safer wheat products to prevent wheat allergy.