Browse > Article
http://dx.doi.org/10.7464/ksct.2012.18.3.295

Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof  

Jeong, Jae-Min (Department of Green Energy Technology, Graduate School of Green Energy Technology, Chungnam National University)
Son, Jung-Woo (Cheonan Bugil High School)
Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Clean Technology / v.18, no.3, 2012 , pp. 295-300 More about this Journal
Abstract
Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from $20{\mu}m$ to $70{\mu}m$ with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.
Keywords
Micromolding technique; Wettability; Anisotropic particles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Samir, M., and Joerg, L., "Physical Approaches to Biomaterial Design," Nat. Mater., 8, 15-23 (2009).   DOI   ScienceOn
2 Jillian, L. P., Kevin, P. H., Mary, E. N., and Joseph, M. D., "PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics," Acc. Chem. Res., 44, 990-998 (2011).   DOI   ScienceOn
3 Hiroaki, O., Murat, G., Kazunori, H., Kiyoshi, M., and Isao, S., "Direct Measurement of the Binding Force between Microfabricated Particles and a Planar Surface in Aqueous Solution by Force-Sensing Piezoresistive Cantilevers," Langmuir, 21, 11251-11261 (2005).   DOI   ScienceOn
4 Shengqing, X., Zhihong, N., Seo, M. S., Patrick, L., Eugenia, K., Howard, A. S., Piotr, G., Douglas, B. W., Irina, G., and George, M. W., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem., 117, 734-738 (2005).   DOI   ScienceOn
5 Christina, L. L., Choi, C. H., Yan, L., Lee, C. S., and Yi, H. M., "Fabrication of Uniform DNA-Conjugated HydrogelMicroparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82, 5851-5858 (2010).   DOI   ScienceOn
6 Xiangling, X., and Sanford, A. A., "Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals," J. Am. Chem. Soc., 126, 7940-7945 (2004).   DOI   ScienceOn
7 Stephanie, E. A. G., Patricia, A. R., Patrick, D. P., Christopher, L., Victoria, J. M., Mary, E. N., and Joseph, M. D., "The Effect of Particle Design on Cellular Internalization Pathways," PNAS, 105, 11613-11618 (2008).   DOI   ScienceOn
8 Akira, H., Ryosuke, K., Yoshinori, T., Akihito, H., and Hiroyasu, Y., "Macroscopic Self-assembly through Molecular Recognition," Nat. Chem., 3, 34-37 (2011).   DOI   ScienceOn
9 Shinji, S., Mitsutoshi, N., and Minoru, S., "Preparation of Monodispersed Poymeric Microspheres over 50 ${\mu}m$ Employing Microchannel Emulsification," Ind. Eng. Chem. Res., 41, 4043- 4047 (2002).   DOI   ScienceOn
10 Shinji, S., Mitsutoshi, N., Hisatsugu, I., and Minoru, S., "Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification," Macromol. Rapid Commun., 22, 773-778 (2001).   DOI
11 Dhananjay, D., Shelley, S. G., Daniel, C. P., Hatton, T. A., and Patrick, S. D., "Stop-flow Lithography in a Microfluidic Device," Lab Chip, 7, 818-828 (2007).   DOI   ScienceOn
12 Ji, H. J., Dhananjay, D., Hatton, T. A., Edwin, L. T., and Patrick, S. D., "A Route to Three-Dimensional Structures in a Microfluidic Device: Stop-Flow Interference Lithography," Angew. Chem. Int. Ed., 46, 9027-9031 (2007).   DOI   ScienceOn
13 Dhananjay, D., and Patrick, S. D., "The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics," Adv. Mater., 21, 1-16 (2009).
14 Kai, P. Y., Hwang, D. K., Ramin, H., and Patrick, S. D., "Multifunctional Superparamagnetic Janus Particles," Langmuir, 26, 4281-4287 (2009).
15 Julie, A. C., Yogesh, K. K., and Samir, M., "Making Polymeric Micro- and Nanoparticles of Complex Shapes," Proc. Nat. Acad. Sci., 29, 11901-11904 (2007).
16 Choi, C. H., Lee, J. K., Yoon, K. S., Anubhav, T., Howard, A. S., David, A. W., and Lee, C. S., "Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem. Int. Ed., 49, 7748-7752 (2010).   DOI   ScienceOn
17 Sue, D. X., Anja, S., Gabriela, M., Cassandra, D., Vasso, A., Patricia, L. M., and Magdalena, P., "Pathogen Recognition and Development of Particulate Vaccines: Does Size Matter?," Methods, 40, 1-9 (2006).   DOI   ScienceOn
18 Muller, C. C., "Physicochemical Characterization of Colloidal Drug Delivery Systems such as Reverse Micelles, Vesicles, Liquid Crystals and Nanoparticles for Topical Administration," Eur. J. Pharmaceutics and Biopharmaceutics, 58, 343-356 (2004).   DOI   ScienceOn
19 Andreas, W., and Axel, H. E. M., "Janus Particles," Soft Matt., 4, 663-668 (2008).   DOI   ScienceOn
20 Nagesh, K., Shanta, D., Pedro, M. V., Lucy, Q. L., Rohit, K., Stephen, J. L., Robert, L., and Omid, C. F., "Engineering of Self-assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy," Proc. Nat. Acad. Sci., 10, 1073 (2010).
21 Park, S. H., Lim, J. H., Chung, S. W., and Chad, A. M., "Self- Assembly of Mesoscopic Metal-Polymer Amphiphiles," Sci., 303, 348-351 (2004).   DOI   ScienceOn
22 Basabaraj, M., Jan, F., and Jan, V., "Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces," Langmuir, 25, 2718- 2728 (2009).   DOI   ScienceOn
23 Yapei, W., Peng, H., Huaping, X., Zhiqiang, W., Xi, Z., and Alexander, V. K., "Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers," Langmuir, 26, 709-715 (2010).   DOI   ScienceOn
24 Jianping, G., Yongxing, H., and Yadong, Y., "Highly Tunable Superparamagnetic Colloidal Photonic Crystals," Angew. Chem. Int. Ed., 46, 7428-7431 (2007).   DOI   ScienceOn
25 Stephane, B., Cecile, C., Joseph, W. W., Allen, Y., and Abraham, D. S., "Shape Selectivity in the Assembly of Lithographically Designed Colloidal Particles," J. Am. Chem. Soc., 129, 40-41 (2007).   DOI   ScienceOn
26 Sharon, C. G., and Michael, J. S., "Anisotropy of Building Blocks and Their Assembly into Complex Structures," Nat. Mater., 6, 557-562 (2007).   DOI   ScienceOn
27 Julie, A. C., and Samir, M., "Role of target geometry in phagocytosis," Proc. Nat. Acad. Sci., 103, 4930-4934 (2006).   DOI   ScienceOn
28 Julie, A. C., Yogesh, K. K., and Samir, M., "Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers," J. Controlled Release, 121, 3-9 (2005).