• Title/Summary/Keyword: modular frame

Search Result 56, Processing Time 0.023 seconds

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.

Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections (브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가)

  • Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Control of Circulating Current in Modular Multilevel Converter under Unbalanced Voltage using Proportional-Resonant Controller

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.143-144
    • /
    • 2016
  • The circulating current control within the phase legs is one of the main control objectives in a modular multilevel converter (MMC) under different operating conditions. This paper proposes a control strategy of circulating currents in the MMC under unbalanced voltage by using a proportional-resonant (PR) controller. Under the unbalanced voltage, the circulating currents in the MMC consists of three components such as positive-sequence, negative-sequence, and zero-sequence circulating currents. With the PR controller, all components of the circulating current will be directly controlled in the stationary reference frame without decomposing into positive- and negative-sequence components. Thus, the ripples in the circulating currents and the DC current are suppressed under the unbalanced voltage. The effectiveness of the proposed method is verified by simulation results based on PSCAD/EMTDC simulation program.

  • PDF

Development of Manufacturing Planning for Multi Modular Construction Project based on Genetic-Algorithm (유전자 알고리즘 기반 다중 모듈러 건축 프로젝트 수행 시 모듈러 유닛 공장생산계획수립 모델 개발)

  • Kim, Minjung;Park, Moonseo;Lee, Hyun-soo;Lee, Jeonghoon;Lee, Kwang-Pyo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.5
    • /
    • pp.54-64
    • /
    • 2015
  • The modular construction has several advantages such as high quality of product, safe work condition and short construction duration. The manufacturing planning of modular construction should consider time frame of manufacturing, transport and erection process with limited resources (e.g., modular units, transporter and workers). The manufacturing planning of multi modular construction project manages the modular construction's characteristics and diversity of projects, as a type of modular unit, modular unit quantities, and date for delivery. However, current modular manufacturing planning techniques are weak in dealing with resource interactions and each project requirement in multi modular construction project environments. Inefficient allocation of resources during multi modular construction project may cause delays and cost overruns to construction operation. In this circumstance, this research suggest a manufacturing planning model for schedule optimization of multi project of modular construction, using genetic algorithm as one of the powerful method for schedule optimization with multiple constrained resources. Comparing to the result of the existed schedule of case study, setting optimized scheduling for multi project decrease the total factory producing schedule. By using proposed optimization tool, efficient allocation of resource and saving project time is expected.

Evaluation of Flexural Behavior of a Modular Pier with Circular CFT (충전원형강관을 이용한 모듈러 교각의 휨 거동 평가)

  • Ma, Hyang Wook;Oh, Hyun Chul;Kim, Dong Wook;Kong, Davon;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.725-734
    • /
    • 2012
  • A new modular pier system using concrete filled circular steel tubes was suggested to realize modular bridge substructures for accelerated bridge construction. Structural details and connection details were proposed by connection multiple concrete filled tubes (CFT) for standardized products of fabrication, delivery and erection. Static tests were performed for the modular pier with suggested details under lateral load conditions for weak and strong axes. Due to the eccentricity by the bracing system, the modular pier showed 5.23 times higher flexural stiffness and 6 times greater flexural strength from the test. It is proper for the rational design to evaluate stress and deformation by frame modeling of the modular CFT pier. Structural capacity of the pier can be obtained by adjusting the spacing of the CFT columns. Design recommendations were derived from the test.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Universal SSR Small Signal Stability Analysis Program of Power Systems and its Applications to IEEE Benchmark Systems

  • Kim, Dong-Joon;Nam, Hae-Kon;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.139-147
    • /
    • 2003
  • The paper presents a novel approach of constructing the state matrix of the multi-machine power system for SSR (subsynchronous resonance) analysis using the linearized equations of individual devices including electrical transmission network dynamics. The machine models in the local d-q reference frame are integrated with the network models in the common R-I reference frame by simply transforming their output equations into the R-I frame where the transformed output is used as the input to the network dynamics or vice versa. The salient feature of the formulation is that it allows for modular construction of various component models without rearranging the overall state space formulation. This universal SSR small signal stability program provides a flexible tool for systematic analyses of SSR small-signal stability impacts of both conventional devices such as generation systems and novel devices such as power electronic apparatus and their controllers. The paper also presents its application results to IEEE benchmark models.

INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS IN HILBERT C-MODULES

  • Tabadkan, Gholamreza Abbaspour;Hosseinnezhad, Hessam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.461-479
    • /
    • 2021
  • This paper includes a general version of Bessel multipliers in Hilbert C∗-modules. In fact, by combining analysis, an operator on the standard Hilbert C∗-module and synthesis, we reach so-called generalized Bessel multipliers. Because of their importance for applications, we are interested to determine cases when generalized multipliers are invertible. We investigate some necessary or sufficient conditions for the invertibility of such operators and also we look at which perturbation of parameters preserve the invertibility of them. Subsequently, our attention is on how to express the inverse of an invertible generalized frame multiplier as a multiplier. In fact, we show that for all frames, the inverse of any invertible frame multiplier with an invertible symbol can always be represented as a multiplier with an invertible symbol and appropriate dual frames of the given ones.

Development of a Modular Building System for the BOQ Using Six-sigma (식스-시그마를 이용한 군 독신자 숙소용 모듈러 건축 시스템 개발)

  • Cho, Bong-Ho;Lee, Jae-Sung;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.89-99
    • /
    • 2010
  • Military Barracks and Bachelor Officer's Quarters are public buildings representing architectural characteristics with repeating the same room modules. These buildings require easy dismantling and reusing for the next generation' military re-organization. For these reasons, since 2005, the modular construction has been applied to military buildings. The most important factors required for modular military buildings are standardization, lowcost construction and reusable construction method. However, conventional modular building system have not been matched with these requirements. This study suggests a new modular system for Bachelor Officer's Quarters using Six-sigma design tool. To reflect the voices of customers, market study and surveys were carried out. Through the QFD, the voices of customers were converted into quality characteristics of building system for BOQ. The various design concepts meeting customer's requirement were derived by the QFD and Pugh matrix methodology. The proposed modular building system shows 80% increased factory production rate and 62% decreased weight of steel frame as compared with the conventional modular building system.