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INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS

IN HILBERT C∗-MODULES

Gholamreza Abbaspour Tabadkan and Hessam Hosseinnezhad

Abstract. This paper includes a general version of Bessel multipliers in

Hilbert C∗-modules. In fact, by combining analysis, an operator on the
standard Hilbert C∗-module and synthesis, we reach so-called generalized

Bessel multipliers. Because of their importance for applications, we are
interested to determine cases when generalized multipliers are invertible.

We investigate some necessary or sufficient conditions for the invertibility

of such operators and also we look at which perturbation of parameters
preserve the invertibility of them. Subsequently, our attention is on how

to express the inverse of an invertible generalized frame multiplier as a

multiplier. In fact, we show that for all frames, the inverse of any invert-
ible frame multiplier with an invertible symbol can always be represented

as a multiplier with an invertible symbol and appropriate dual frames of

the given ones.

1. Introduction

Frames in Hilbert spaces were originally introduced by Duffin and Schaeffer
[13] to deal with some problems in nonharmonic Fourier analysis. Many gener-
alizations of frames were introduced, e.g. pseudo-frames [21], g-frames [26] and
fusion frames (frames of subspaces) [11].

Frank and Larson [14] extended the frame theory for the elements of C∗-
algebras and (finitely or countably generated) Hilbert C∗-modules. Extending
the results to this more general framework is not a routine generalization, as
there are essential differences between Hilbert C∗-modules and Hilbert spaces.
For example, we know that the Riesz representation theorem for continuous
linear functionals on Hilbert spaces does not extend to Hilbert C∗-modules
and there exist closed subspaces in Hilbert C∗-modules that have no orthogo-
nal complement. Moreover, we know that every bounded operator on a Hilbert
space has an adjoint, while there are bounded operators on Hilbert C∗-modules
which do not have one. It should be mentioned that, contrasting to the Hilbert
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space situation, an arbitrary Hilbert C∗-module need not possess an orthonor-
mal basis.

Bessel multipliers in Hilbert spaces were introduced by Balazs in [5]. Bessel
multipliers are operators that are defined by a fixed multiplication pattern
which is inserted between the analysis and synthesis operators. This class of
operators is not only of interest for applications in modern life, for example in
acoustics [27], psychoacoustics [9] and denoising [22], but also it is important in
different branches of functional analysis [7]. In this respect, it is important to
find the inverse of a multiplier if it exists. Recently, M. Mirzaee Azandaryani
and A. Khosravi generalized multipliers to Hilbert C∗-modules [19].

The standard matrix description of operators on Hilbert spaces, using an
orthonormal basis, was presented in [12]. This idea was developed for Bessel
sequences, frames and Riesz sequences by Balazs [6]. In the last paper, the
author also studied the dual function, which assigns an operator to a matrix.
Using this approach, a generalization of Bessel multipliers is obtained, as in-
troduced in [8]. In the present paper, the concept of generalized multipliers
is extended for Hilbert modules and then some properties of these operators
are investigated. In particular, special attention is devoted to the study of
invertible generalized multipliers. The paper is organized as follows.

In Section 2, some notations and preliminary results of Hilbert modules, their
frames and Bessel multipliers are given. Section 3 is devoted to the general-
ization of Bessel multipliers in Hilbert C∗-modules and then some conditions
for invertibility of such operators are obtained. In the last section, we extend
the results from [10] in more general cases, i.e., for generalized multipliers in
Hilbert C∗-modules. In more details, our attention is on how to express the
inverse of an invertible generalized multiplier as a multiplier. In fact, we show
that for all frames, the inverse of any invertible frame multiplier with an in-
vertible symbol can always be represented as a multiplier with the invertible
symbol and appropriate dual frames of the given ones.

2. Notation and preliminaries

In this section, we recall some definitions and basic properties of Hilbert C∗-
modules and their frames. Throughout this paper, A is a unital C∗-algebra,
E and F are finitely or countably generated Hilbert A-modules and I is an at
most countable index set.

A (left) Hilbert C∗-module over the C∗-algebra A is a left A-module E
equipped with an A-valued inner product 〈·, ·〉 : E × E → A satisfying the
following conditions:

(1) 〈x, x〉 ≥ 0 for every x ∈ E and 〈x, x〉 = 0 if and only if x = 0,
(2) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ E,
(3) 〈·, ·〉 is A-linear in the first argument,
(4) E is complete with respect to the norm ‖x‖2 = ‖ 〈x, x〉 ‖A.
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Given Hilbert C∗-modules E and F , we denote by L (E,F ) the set of all ad-
jointable operators from E to F (i.e., of all maps T : E → F such that there
exists T ∗ : F → E with the property 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ E, y ∈ F ).
It is well-known that each adjointable operator is necessarily bounded and A-
linear in the sense T (ax) = aT (x) for all a ∈ A, x ∈ E.

For each elements x ∈ E, y ∈ F , we define the operator Θx,y : E → F by
Θx,y(z) = 〈z, x〉 y for each z ∈ E. It is easy to check that Θx,y ∈ L (E,F )
and (Θx,y)∗ = Θy,x. Operators of this form are called elementary operators.
Each finite linear combination of elementary operators is said to be a finite
rank operator. The closed linear span of the set {Θx,y : x ∈ F, y ∈ E}
in L (E,F ) is denoted by K (E,F ) and its elements will be called compact
operators. Specially, if E = F , we write L (E) and K (E), respectively. It
is well-known that L (E) is a C∗-algebra and K (E) is the closed two-sided
ideal in L (E). Recall that the center of a Banach algebra A, denoted Z(A), is
defined as Z(A) = {a ∈ A : ab = ba,∀b ∈ A}. It is clear that if a ∈ Z(A), then

a∗ ∈ Z(A). Also if a is a positive element of Z(A), then a
1
2 ∈ Z(A).

Let A be a C∗-algebra. Consider

`2(A, I) :=

{
{ai}i∈I ⊆ A :

∑
i∈I

aia
∗
i converges in norm in A

}
.

It is easy to see that `2(A, I) with pointwise operations and the inner product

〈{ai}i∈I, {bi}i∈I〉 =
∑
i∈I

aib
∗
i ,

becomes a Hilbert C∗-module which is called the standard Hilbert C∗-module
over A. A Hilbert A-module E is called finitely generated (resp. countably
generated) if there exists a finite subset {x1, . . . , xn} (resp. countable subset
{xi}i∈I) of E such that E equals the closed A-linear hull of this set.

Let E and F be Hilbert A-modules. An A-linear operator t : Dom(t) ⊆ E →
F is called densely defined if Dom(t) is a dense submodule of E (not necessarily
identical with E) and whose range is in F . A densely defined operator t :
Dom(t) ⊆ E → F is called closed if its graph G(t) = {(x, tx) : x ∈ Dom(t)} is
a closed submodule of the Hilbert A-module E⊕F . A densely defined operator
t : Dom(t) ⊆ E → F is called adjointable if it possesses a densely defined map
t∗ : Dom(t∗) ⊆ F → E with the domain

Dom(t∗) = {y ∈ F : there is z ∈ E such that 〈tx, y〉F = 〈x, z〉E
for any x ∈ Dom(t)}.

The above property implies that t∗ is a closed A-linear map. For more details
about Hilbert C∗-modules, we refer the interested reader to the books [20,23].

Now, we recall the concept of frame in Hilbert C∗-modules which is defined
in [14]. Let E be a countably generated Hilbert module over a unital C∗-algebra
A. A sequence {xi}i∈I ⊂ E is said to be a frame if there exist two constant
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C,D > 0 such that

(2.1) C 〈x, x〉 ≤
∑
i∈I
〈x, xi〉 〈xi, x〉 ≤ D 〈x, x〉

for every x ∈ E. The optimal constants (i.e., maximal for C and minimal for
D) are called frame bounds. If the sum in (2.1) converges in norm, the frame is
called a standard frame. The sequence {xi}i∈I is called a Bessel sequence with
bound D if the upper inequality in (2.1) holds for every x ∈ E.

A Riesz basis in a Hilbert C∗-module E is a frame {xi}i∈I such that for each
i ∈ I, xi 6= 0 and if an A-linear combination

∑
i∈J⊆I aixi is equal to zero, then

every summand aixi is equal to zero.
Suppose that X = {xi}i∈I is a Bessel sequence in Hilbert A-module E with

bound D. The operator TX : `2(A, I)→ E defined by

TX {ai}i∈I =
∑
i∈I

aixi,

is called the synthesis operator. The adjoint operator T ∗X : E → `2(A, I) which
is given by

T ∗Xx = {〈x, xi〉}i∈I ,
is called the analysis operator. Composing TX and T ∗X , we obtain the frame
operator SX : E → E as

SXx = TXT
∗
Xx =

∑
i∈I
〈x, xi〉xi.

If X = {xi}i∈I is a standard frame with bounds C,D, the frame operator
SX is well-defined, positive, invertible and adjointable. Moreover, it satisfies
C ≤ SX ≤ D and D−1 ≤ S−1X ≤ C−1. Also, for each x ∈ E, we have the
reconstruction formula as follows,

(2.2) x =
∑
i∈I

〈
x, S−1X xi

〉
xi =

∑
i∈I
〈x, xi〉S−1X xi.

The sequence {x̃i}i∈I =
{
S−1X xi

}
i∈I, which is a standard frame with bounds

D−1 and C−1, is called the canonical dual frame of X = {xi}i∈I. Sometimes
the reconstruction formula of standard frames is valid with other (standard)
frames {yi}i∈I instead of

{
S−1X xi

}
i∈I. They are said to be alternative dual

frames of X = {xi}i∈I.
Now, let us take a brief review of the definition of Bessel multipliers in

Hilbert C∗-modules.
Let E and F be two Hilbert modules over a unital C∗-algebra A, and let X =

{xi}i∈I ⊆ E and Y = {yi}i∈I ⊆ F be standard Bessel sequences. Moreover,
let m = {mi}i∈I ∈ `∞(A, I) be such that mi ∈ Z(A), for each i ∈ I, and Mm

defined on `2(A, I) as Mm {ai}i∈I = {miai}i∈I.
The operator Mm,Y,X : E → F which is defined by

(2.3) Mm,Y,X = TYMmT
∗
X ,
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is called the Bessel multiplier for the Bessel sequences {xi}i∈I and {yi}i∈I. It
is easy to see that Mm,Y,X(x) =

∑
i∈Imi 〈x, xi〉 yi. For more details about the

Bessel multipliers in Hilbert C∗-modules, one can see [19].

3. Generalized Bessel multipliers in Hilbert C∗-modules

The matrix representation of operators in Hilbert spaces using an orthonor-
mal basis [12], Gabor frames [15] and linear independent Gabor systems [25] led
Balazs to develop this idea in full generality for Bessel sequences, frames and
Riesz sequences [6]. In the same paper, the author also established the function
which assigns an operator in B(H1,H2) to an infinite matrix in B

(
`2(I)

)
. The

last concept is a generalization of Bessel multiplier as introduced in [6]. The
following essential definition is recalled from [6,8].

Definition. Let H1 and H2 be Hilbert spaces and X = {xi}i∈I ⊂ H1 and
Y = {yi}i∈I ⊂ H2 be Bessel sequences. Moreover, let M be an infinite matrix

defining a bounded operator from `2(I) to `2(I), (Mc)i =
∑
k∈IMi,kck. Then

the operator O(X,Y )(M) : H1 → H2 defined by(
O(X,Y )(M)

)
h = TYMT ∗Xh =

∑
k∈I

∑
j∈I

Mk,j 〈h, xj〉 yk, (h ∈ H1),

is called the generalized Bessel multiplier for the Bessel sequences X and Y .

In the sequel, first, we introduce the concept of Generalized Bessel multipliers
for countably generated Hilbert C∗-modules and then, we will discuss some
properties of such operators.

Definition. Let E and F be two Hilbert C∗-modules over a unital C∗-algebra
A and X = {xi}i∈I ⊂ E and Y = {yi}i∈I ⊂ F be standard Bessel sequences.

Also, let U ∈ L
(
`2(A, I)

)
be an arbitrary non-zero operator. The operator

MU,Y,X : E → F which is defined as

(3.1) MU,Y,X(x) = TY UT
∗
X(x), (x ∈ E),

is called the Generalized Bessel multiplier associated with X and Y with sym-
bol U . Some of the main properties of the generalized Bessel multipliers are
summarized in the next proposition.

Proposition 3.1. For the generalized Bessel multiplier MU,Y,X , the following
assertions hold:

(1) MU,Y,X ∈ L(E,F ) and M∗
U,Y,X = MU∗,X,Y .

(2) If U is a compact operator on `2(A, I), then MU,Y,X ∈ K(E,F ).
(3) If U is a positive operator on `2(A, I), then MU,X,X ∈ L(E) is a positive

operator.

Proof. (1) It is clear that MU,Y,X ∈ L(E,F ). Also

M∗
U,Y,X = (TY UT

∗
X)
∗

= TXU
∗T ∗Y = MU∗,X,Y .
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(2) At first, let us prove that MU,Y,X is a finite rank operator if U is one. If
U is a finite rank operator, then U =

∑n
i=1 Θai,bi for some ai, bi ∈ `2(A, I), (i =

1, . . . , n). Hence,

MU,Y,X = TY UT
∗
X = TY

(
n∑
i=1

Θai,bi

)
T ∗X =

n∑
i=1

ΘTXai,TY bi .

Therefore, MU,Y,X is a finite rank operator from E to F . Now, let U be
a compact operator on `2(A, I). Thus there exists a sequence of finite rank
operators on `2(A, I), say {Uα}α, such that ‖Uα − U‖ → 0. So

‖MUα,Y,X −MU,Y,X‖ ≤ ‖T ∗Y ‖ ‖Uα − U‖ ‖TX‖.

As seen above, MUα,Y,X are finite rank operators. From this fact, we conclude
that MU,Y,X is a compact operator.

(3) Since U is positive, by [20, Lemma 4.1], 〈a, Ua〉 ≥ 0 for all a = {ai}i∈I ∈
`2(A, I). So

〈x,MU,X,Xx〉 = 〈x, TXUT ∗Xx〉 = 〈T ∗Xx, UT ∗Xx〉 ≥ 0.

Again by [20, Lemma 4.1], it follows that MU,X,X is positive. �

In the following, we investigate sufficient conditions for being standard
frames by properties of the generalized Bessel multipliers.

Proposition 3.2. Assume that X = {xi}i∈I ⊂ E and Y = {yi}i∈I ⊂ F are
Bessel sequences.

(1) If MU,Y,X has a left inverse, then X is a standard frame for E.
(2) If MU,Y,X has a right inverse, then Y is a standard frame for F .

Proof. Let L be the left inverse of MU,Y,X . Then for every x ∈ E,

‖x‖2 = ‖〈LMU,Y,Xx, x〉‖
= ‖〈LTY UT ∗Xx, x〉‖

≤
√
BY ‖L‖ ‖U‖ ‖‖x‖ ‖T ∗Xx‖ .

It follows that

‖x‖√
BY ‖L‖ ‖U‖

≤

∥∥∥∥∥∑
i∈I
〈x, xi〉 〈xi, x〉

∥∥∥∥∥
1/2

,

and so by [17, Proposition 3.8], X is a standard frame for E. The second part
is similar. �

Similar to the case of operators on Hilbert spaces, we also have the following
criterion for the invertibility of operators on Hilbert modules.
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Lemma 3.3. Let E be a Hilbert A-module and U : E → E be an invertible
operator. Also let W ∈ L(E) be such that for each x ∈ E, ‖Ux−Wx‖ ≤ λ‖x‖
where λ ∈ [0, ‖U−1‖−1). Then W is invertible and

1

λ+ ‖U‖
‖x‖ ≤ ‖W−1x‖ ≤ 1

‖U−1‖−1 − λ
‖x‖.

Proof. It follows directly from the proofs of [4, Theorem 3.2.3] and [24, Propo-
sition 2.2]. �

The next proposition investigates some sufficient conditions for invertibility
of generalized frame multipliers.

Proposition 3.4. Let E be a Hilbert A-module and X = {xi}i∈I be a standard
frame for E with bounds C and D. Suppose that Y = {yi}i∈I is a sequence of

E and there exists a positive constant λ < 1
D

(
CD2−C2D
C2+D2

)2
such that

(3.2) ‖
∑
i∈I
〈x, xi − yi〉 〈xi − yi, x〉 ‖ ≤ λ‖x‖2.

Moreover, suppose that U is a non-zero adjointable operator on `2(A, I) with

‖U − I‖ < C2

D2 . Then Y is a standard frame and MU,X,Y is invertible.

Proof. The first part follows from [16, Theorem 3.2]. Now, let us deal with the
second claim. Suppose SX is the frame operator associated to X. For each
x ∈ E:

‖MU,X,X(x)− SX(x)‖ = ‖MU,X,X(x)−MI,X,X(x)‖
= ‖MU−I,X,X(x)‖
= ‖TX(U − I)T ∗X(x)‖
≤ ‖TX‖‖U − I‖‖T ∗X(x)‖
< (C2/D)‖x‖.

So by Lemma 3.3, MU,X,X is an invertible operator with

1

‖SX‖+ C2/D
≤ ‖M−1

U,X,X‖ ≤
1

‖S−1X ‖−1 − C2/D
.

Now for every x ∈ E,

‖MU,X,Y (x)−MU,X,X(x)‖ = ‖MU,X,Y−X(x)‖
= ‖TXUT ∗Y−X(x)‖
≤ ‖TX‖‖U‖‖T ∗Y−X(x)‖

≤ ‖U‖
√
D
√
λ‖x‖.
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If we show that ‖U‖
√
D
√
λ < 1

‖M−1
U,X,X‖

, then the proof will be completed. But

‖U‖
√
D
√
λ ≤ C2 +D2

D2

√
D
√
λ < C − C2

D
≤ ‖S−1X ‖

−1 − C2

D
≤ 1

‖M−1
U,X,X‖

,

and so by Lemma 3.3 the result holds. �

The following two propositions contain sufficient conditions for the invert-
ibility of frame multipliers.

Proposition 3.5. Let Y = {yi}i∈I be a standard frame for Hilbert A-module
E with bounds C,D and W : E → E be an adjointable and bijective operator
such that xi = Wyi for each i ∈ I. Moreover, let U be a bounded operator on
`2(A, I) such that ‖U − I‖ < C

D . Then the following statements hold:

(1) X = {xi}i∈I is a standard frame for E.

(2) MU,Y,X(resp. MU,X,Y ) is invertible and M−1
U,Y,X = (W−1)∗ M−1

U,Y,Y

(resp. M−1
U,X,Y = M−1

U,Y,Y (W−1)).

Proof. (1) It follows from [3, Theorem 2.5].
(2) First note that MU,Y,X = MU,Y,Y W ∗. Indeed

MU,Y,Y W ∗(x) = TY UT
∗
YW

∗(x) = TY U {〈W ∗x, yi〉}i∈I
= TY U {〈x, xi〉}i∈I
= TY UT

∗
X(x)

= MU,Y,X(x).

So it is enough to prove that MU,Y,Y is invertible. For every x ∈ E,

‖MU,Y,Y (x)− SY (x)‖ = ‖MU−I,Y,Y (x)‖ ≤ D‖U − I‖‖x‖ < C‖x‖.

Since C ≤ 1
‖S−1
Y ‖

, it follows from Lemma 3.3 that MU,Y,Y is invertible. The

invertibility of MU,X,Y is obtained with the same argument. �

Proposition 3.6. Let X = {xi}i∈I be a standard frame for Hilbert A-module E

with upper bound D and Xd =
{
xdi
}
i∈I be a dual frame of X with upper bound

D′. Also, let U be a bounded operator on `2(A, I) such that ‖U − I‖ < 1√
DD′

.

Then the multiplier MU,X,Xd (resp. MU,Xd,X) is invertible.

Proof. For every x ∈ E,

‖MU,X,Xd(x)− x‖ = ‖MU−I,X,Xd‖ ≤
√
DD′‖U − I‖‖x‖ < ‖x‖.

So MU,X,Xd is invertible. �

Proposition 3.7. Let Y = {yi}i∈I be a standard frame for Hilbert A-module

E with bounds C and D and Ỹ = {ỹi}i∈I be its canonical dual frame.
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(1) If X = {xi}i∈I is a standard Bessel sequence such that

(3.3)
∑
i∈I
‖xi − ỹi‖2 <

1

4D
,

then MI,Y,X is invertible.
(2) Let X = {xi}i∈I be a standard Bessel sequence and (3.3) hold. Also, let

U be a bounded operator on `2(A, I) with ‖U‖ < 1 and ‖U − I‖ <
√
C

2
√
D

.

Then MU,Y,X is invertible.

Proof. (1) For every x ∈ E,

‖MI,Y,X(x)− x‖ = ‖TY T ∗X(x)− TY T ∗Ỹ (x)‖
= ‖TY T ∗X−Ỹ (x)‖

≤
√
D‖ {〈x, xi − ỹi〉}i∈I ‖`2(A,I)

=
√
D‖
∑
i∈I
〈x, xi − ỹi〉 〈xi − ỹi, x〉 ‖1/2

≤
√
D

(∑
i∈I
‖x‖2‖xi − ỹi‖2

)1/2

=
√
D‖x‖

(∑
i∈I
‖xi − ỹi‖2

)1/2

< ‖x‖,
and so MI,Y,X is invertible.

(2) For every x ∈ E we have:

‖MU,Y,X(x)− x‖ ≤ ‖MU,Y,X(x)−MU,Y,Ỹ (x)‖+ ‖MU,Y,Ỹ (x)−MI,Y,Ỹ (x)‖
= ‖TY UT ∗X−Ỹ (x)‖+ ‖TY (U − I)T ∗

Ỹ
(x)‖

≤
√
D‖U‖‖T ∗

X−Ỹ (x)‖+ (
√
D/C)‖U − I‖‖x‖

≤
√
D‖U‖‖x‖

(∑
i∈I
‖xi − ỹi‖2

)1/2
+ (
√
D/C)‖U − I‖‖x‖

< ‖x‖.
Hence we conclude that MU,Y,X is invertible. �

We are now in a position to state and prove our main result about the
stability of invertible generalized multipliers.

Proposition 3.8. Let X = {xi}i∈I, Y = {yi}i∈I, Z = {zi}i∈I and F = {fi}i∈I
be Bessel sequences for Hilbert module E with bounds DX , DY , DZ and DF ,
respectively. Moreover, let U, V ∈ L

(
`2(A, I)

)
with ‖U − V ‖ < ε for some

ε > 0, and

(3.4) Dε+ 5D‖U‖ < D−1‖U‖−1,
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where D = max{DX , DY , DZ , DF }. If MU,Y,X is invertible, then MV,Z,F is
also invertible and Z,F are standard frames for E.

Proof. First, note that

1

D‖U‖
≤ 1√

DXDY ‖U‖
≤ 1

‖MU,Y,X‖
.

Furthermore,

‖MV,Z,F −MU,Y,X‖
= ‖MV,Z,F −MU,Z,F + MU,Z,F −MU,Z,X + MU,Z,X −MU,Y,X‖
≤ ‖TZ(V − U)T ∗F ‖+ ‖TZU(T ∗F − T ∗X)‖+ ‖(TZ − TY )UT ∗X‖

≤
√
DZDF ‖V − U‖+

√
DZ‖U‖‖T ∗F − T ∗X‖+

√
DX‖U‖‖TZ − TY ‖

≤
√
DZDF ε+

√
DZ‖U‖

(√
DF +

√
DX

)
+
√
DX‖U‖

(√
DZ +

√
DY

)
≤ Dε+ 5D‖U‖

<
1

‖MU,Y,X‖
.

Now, Lemma 3.3 implies that MV,Z,F is invertible. The second part is obtained
by Proposition 3.2. �

Riesz bases in Hilbert C∗-modules are much more different than the Hilbert
space cases. For instant, as it was proved in [1, Proposition 4.1], the generalized
Riesz multiplier MU,Y,X is invertible if and only if U is invertible. However,
this result is no longer true for Riesz multipliers in the Hilbert C∗-modules
setting. Consider the following example.

Example 3.9. Let A = M2×2 (C) denote the C∗-algebra of all 2× 2 complex
matrices. Let E = A and for any B,C ∈ E define

〈B,C〉 = BC∗.

Then E is a Hilbert A-module. Let Aij be the 2 × 2 matrix with 1 in the
ij-th entry and 0 elsewhere, where 1 ≤ i, j ≤ 2. Then X = {A21, A12} and
Y = {A11, A22} are Riesz bases for E. If U = I`2(A,I), then MU,Y,X = 0 and
therefore is not invertible, while U is invertible.

Hence, we can use the concept of modular Riesz bases, which share many
properties with Riesz bases in Hilbert spaces. First, we recall the following
definition from [18].

Definition. Let A be a unital C∗-algebra and E be a finitely or countably
generated Hilbert A-module. A sequence {xi}i∈I is a modular Riesz basis for

E if there exists an adjointable and invertible operator U : `2(A, I) → E such
that Uδi = xi for each i ∈ I, where {δi}i∈I is the standard orthonormal basis

of `2(A, I).
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The next two propositions give some necessary and sufficient conditions for
invertibility of generalized multipliers associated to modular Riesz bases.

Proposition 3.10. Let U be a bounded linear operator on `2(A, I) and X =
{xi}i∈I and Y = {yi}i∈I be two modular Riesz bases for Hilbert A-module E.
Then U is invertible if and only if the generalized multiplier MU,Y,X is invert-
ible.

Proof. Assume that X̃ and Ỹ are the dual modular Riesz bases of X and Y ,
respectively. First, note that due to [19, Lemma 4.1], we have T ∗XTX̃ = I. Now,
if U is invertible, then

(MU,Y,X)
(
MU−1,X̃,Ỹ

)
= (TY UT

∗
X)
(
TX̃U

−1T ∗
Ỹ

)
= I,

and similarly
(
MU−1,X̃,Ỹ

)
(MU,Y,X) = I. Therefore, M−1

U,Y,X = MU−1,X̃,Ỹ .

Conversely, suppose MU,Y,X is an invertible operator. Then

U
(
T ∗XM−1

U,Y,XTY

)
= T ∗

Ỹ
TY

(
UT ∗XM−1

U,Y,X

)
TY

= T ∗
Ỹ

(
TY UT

∗
XM−1

U,Y,X

)
TY

= T ∗
Ỹ
TY

= I,

also
(
T ∗XM−1

U,Y,XTY

)
U = I. So U is invertible. �

Proposition 3.11. Let U be a bounded invertible operator on `2(A, I) and
Y = {yi}i∈I ⊂ E be a modular Riesz basis. Moreover, let X = {xi}i∈I be a
standard frame for E. Then the following assertions are equivalent.

(1) X has a unique dual frame.
(2) MU,Y,X is invertible.

Proof. (1)⇒(2) To obtain the second statement from the first one, suppose
that X has a unique dual frame. Then by [17, Theorem 4.9], the associated
analysis operator T ∗X is surjective. Also by using the reconstruction formula
(2.2), we conclude that T ∗X is injective and so T ∗X is bijective. Due to the fact
that TY and U are bijective, we deduce MU,Y,X is invertible.

(2)⇒(1) Now, to drive the first statement from the second one, we assume
MU,Y,X is invertible. Then T ∗X is surjective and so by [17, Theorem 4.9], X
has a unique dual frame. �

4. Representation of the inverse of a multiplier

As we have seen in Proposition 3.10, for modular Riesz bases X = {xi}i∈I
and Y = {yi}i∈I, if U ∈ L

(
`2(A, I)

)
is invertible, then the generalized multiplier

MU,Y,X is automatically invertible and vise versa. Moreover,

(4.1) M−1
U,Y,X = MU−1,X̃,Ỹ .
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This result motivates us to generalize this idea for frames and even non-Bessel
sequences. In more details, we will show that there are other invertible frame
multipliers MU,Y,X whose inverses can be represented as multipliers using the
inverted symbol and suitable dual frames of X and Y .

The following proposition gives a representation of the inverse of an invertible
frame multiplier with an invertible symbol.

Proposition 4.1. Let X = {xi}i∈I and Y = {yi}i∈I be two standard frames

for Hilbert A-module E and U be an invertible operator on `2(A, I). Assume
that MU,Y,X is invertible. Then the following hold.

(1) There exists a dual frame Y † of Y such that for any dual frame Xd of
X we have

(4.2) M−1
U,Y,X = MU−1,Xd,Y † .

(2) There exists a dual frame X† of X such that for any dual frame Y d of
Y we have

(4.3) M−1
U,Y,X = MU−1,X†,Y d .

(3) If F = {fi}i∈I is a Bessel sequence in E such that M−1
U,Y,X =MU−1,X†,F

(resp. M−1
U,Y,X = MU−1,F,Y †), then F must be a dual of Y (resp. X).

Proof. (1) Denote M = MU,Y,X . Let {δi}i∈I be the standard orthonormal basis

of `2(A, I). The sequence
{

(M−1)∗TXU
∗δi
}
i∈I is a dual of Y , since∑

i∈I

〈
x,
(
M−1)∗ TXU∗δi〉 yi =

∑
i∈I

〈
UT ∗XM−1(x), δi

〉
yi

= TY UT
∗
XM−1(x)

= MM−1(x) = x.

Put Y † =
{(

M−1)∗ TXU∗δi}
i∈I

. We have(
M−1)∗ TX (U∗δi) = TY †

(
U−1

)∗
(U∗δi) .

By the boundedness of operators and surjectivity of U , we conclude that

(4.4)
(
M−1)∗ TX = TY †

(
U−1

)∗
.

Using any dual Xd of X, we obtain
(
M−1)∗ = TY †

(
U−1

)∗
T ∗Xd and hence

M−1 = TXdU
−1T ∗Y † = MU−1,Xd,Y † .

(2) The sequence
{
M−1TY Uδi

}
i∈I is a dual of X, because∑

i∈I
〈x, xi〉M−1TY Uδi = M−1TY U

(∑
i∈I
〈x, xi〉 δi

)
= M−1TY UT

∗
X(x)

= M−1M(x) = x.
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Put X† =
{
M−1TY Uδi

}
i∈I. Now, we have:

M−1TY (Uδi) = TX†U
−1 (Uδi) .

The boundedness of operators and surjectivity of U imply that

(4.5) M−1TY = TX†U
−1.

Using any dual frame Y d of Y , we get M−1 = TX†U
−1T ∗Y d = MU−1,X†,Y d .

(3) Let F = {fi}i∈I be a Bessel sequence in E such that M−1 = MU−1,X†,F .
Then, by (4.5),

TY T
∗
F = MTX†U

−1T ∗F = MM−1 = I,

which implies that F is a dual frame of Y . In a similar way, every Bessel
sequence F in E which satisfies M−1

U,Y,X = MU−1,F,Y † must be a dual of X. �

Remark 4.2. It is worth mentioning that in Proposition 4.1, if E = `2(A, I),
one can show that X† and Y † are unique. For instance, assume that there exist
dual frames Y † and Y ‡ of Y such that for any dual frame Xd of X,

(4.6) M−1
U,Y,X = MU−1,Xd,Y † = MU−1,Xd,Y ‡ .

We show that Y † = Y ‡. According to (4.6), for every a ∈ E and dual frame
Xd of X,

(4.7) (MU−1,Xd,Y † −MU−1,Xd,Y ‡)(a) = (TY †−Y ‡U
−1T ∗Xd)(a) = 0.

On the other hand, as a consequence of [2, Theoram 3.4], the dual frames of X

are characterized as the sequences
{
x̃i + hi −

∑
j∈I 〈x̃i, xj〉hj

}
i∈I

, where H =

{hi}i∈I runs through the Bessel sequences in E. Using this characterization,
for every a ∈ E we have

TY †−Y ‡U
−1T ∗{x̃i+hi−

∑
j∈I〈x̃i,xj〉hj}

(a)

= TY †−Y ‡U
−1T ∗

X̃
(a) + TY †−Y ‡U

−1T ∗{hi−
∑
j∈I〈x̃i,xj〉hj}

(a) = 0

for every Bessel sequence H = {hi}i∈I in E. By (4.7), TY †−Y ‡U
−1T ∗

X̃
(a) = 0

and so

TY †−Y ‡U
−1T ∗{hi−

∑
j∈I〈x̃i,xj〉hj}

(a)

= TY †−Y ‡U
−1T ∗H(a)− TY †−Y ‡U−1T ∗{∑j∈I〈x̃i,xj〉hj}

(a) = 0
(4.8)

for every Bessel sequence H = {hi}i∈I in E. Apply (4.8) for the Bessel sequence
Hi = {0, . . . , 0, δi, 0, . . .}, we obtain

(4.9) TY †−Y ‡U
−1T ∗Hi(a)− TY †−Y ‡U−1T ∗{〈x̃i,xi〉δi}(a) = 0.

Using (4.7), it is concluded that

TY †−Y ‡U
−1T ∗{〈x̃i,xi〉δi}(a) = 〈a, δi〉TY †−Y ‡U−1T ∗X̃(xi) = 0.

Therefore, TY †−Y ‡U
−1T ∗Hi(a) = 0 for every a ∈ E. By choosing a = δi, we

have TY †−Y ‡U
−1({0, . . . , 0, 1A, 0, . . .}) = 0, with the unit being the i-th entry.



474 GH. ABBASPOUR TABADKAN AND H. HOSSEINNEZHAD

Since i ∈ I is chosen arbitrary and U is invertible, it follows that TY †−Y ‡ is a
null-operator on `2(A, I). So Y † − Y ‡ = 0 and therefore Y † = Y ‡.

Remark 4.3. Recall that two frames X and Y are called equivalent if there
exists an invertible operator W : E → E so that xi = Wyi for all i ∈ I. Due
to [14, Theorem 6.1], when Y is a frame for E, then a dual frame Y d of Y

is equivalent to Y if and only if Y d = Ỹ . Now, regarding Proposition 4.1, it
is natural to ask whether the frame X† (resp. Y †) is the canonical dual of X

(resp. Y ). It is easy to check that X† = X̃ (resp. Y † = Ỹ ) if and only if X is
equivalent to {TY Uδi}i∈I (resp. Y is equivalent to {TXU∗δi}i∈I). In this case,

M−1
U,Y,X = MU−1,X̃,Y d (resp. M−1

U,Y,X = MU−1,Xd,Ỹ ).

For the more general case of invertible symbols, we have the following result.

Proposition 4.4. Let X = {xi}i∈I and Y = {yi}i∈I be standard frames for

Hilbert A-module E and U ∈ L(`2(A, I)) be invertible. If MU,Y,X is invertible,
then there exists a bounded operator ΓU,Y,X : E → `2(A, I) such that

(4.10) M−1
U,Y,X = MU−1,X̃,Y d + (ΓU,Y,X)

∗
T ∗Y d

for all dual frames Y d =
{
ydi
}
i∈I of Y .

Proof. Define ΓU,Y,X : E → `2(A, I) by

(4.11) ΓU,Y,X(x) := T ∗Y

(
M−1

U,Y,X

)∗
(x)− (U−1)∗T ∗XS

−1
X (x), (x ∈ E).

Then, the operator ΓU,Y,X is bounded and

M−1
U,Y,XTY = S−1X TXU

−1 + (ΓU,Y,X)
∗
.

Using any dual frame Y d of Y , we get

(4.12) M−1
U,Y,X = MU−1,X̃,Y d + (ΓU,Y,X)

∗
T ∗Y d . �

Remark 4.5. Using similar arguments like the above ones can show that if
MU,Y,X is invertible, then there exists a bounded operator ΓU,Y,X : E →
`2(A, I) such that

M−1
U,Y,X = MU−1,Xd,Ỹ + TXdΓU,Y,X .

In fact, it is enough to set ΓU,Y,X = T ∗XM−1
U,Y,X − U−1T ∗Y S

−1
Y . Moreover, if

E = `2(A, I), then the operator ΓU,Y,X can be obtained uniquely. In fact,
suppose on the contrary that the equation (4.12) holds for two operators Γ1

and Γ2. It follows that

(4.13) (Γ1 − Γ2)∗T ∗Y d = 0

for all duals Y d of Y . As is mentioned the dual frames of Y are characterized
as the sequences ỹi + hi −

∑
j∈I
〈ỹi, yj〉hj


i∈I

,
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where {hi}i∈I runs through the Bessel sequences in E. So

(Γ1−Γ2)∗T ∗{ỹi+hi−∑j∈I〈ỹi,yj〉hj}i∈I
=(Γ1−Γ2)∗

(
T ∗
Ỹ

+ T ∗{hi−∑j∈I〈ỹi,yj〉hj}
)

=0.

Using (4.13) with Ỹ in the role of Y d, it then follows that

(Γ1 − Γ2)∗T ∗{hi−∑j∈I〈ỹi,yj〉hj} = 0.

Take {hi}i∈I = {δ1, 0, 0, . . .}, where {δi}i∈I is the canonical orthonormal basis
for E = `2(A, I). Then, for every a ∈ E,

〈a, δ1〉(Γ1 − Γ2)∗ (δ1 − {〈y1, ỹi〉}i∈I) = 0.

Using (4.13) it is concluded that (Γ1 − Γ2)∗ ({〈y1, ỹi〉}i∈I) = 0 and hence

〈a, δ1〉(Γ1 − Γ2)∗ (δ1) = 0.

Choosing a = δ1, one comes to the conclusion that (Γ1 − Γ2)∗ (δ1) = 0. In a
similar way, taking {hi}i∈I = {0, 0, . . . , 0, δi, 0, . . .}, with δi being at the i-th
place, i ≥ 2, we get (Γ1 − Γ2)∗ (δi) = 0 for all i ∈ I. Therefore, Γ1 = Γ2.

The next proposition determines a class of multipliers which are invertible
and whose inverses can be written as a multiplier. While in Proposition 4.1, it is
assumed that the frame multiplier is invertible, in the following we investigate
a sufficient condition for invertibility of frame multipliers. Moreover, in the
special case E = `2(A, I), we can find an equivalent condition for invertibility
of frame multipliers.

Proposition 4.6. Let X = {xi}i∈I and Y = {yi}i∈I be standard frames for

Hilbert A-module E and U ∈ L(`2(A, I)) be invertible. If X is equivalent to
{TY Uδi}i∈I (resp. Y is equivalent to {TXU∗δi}i∈I), then MU,Y,X is invertible

and M−1
U,Y,X = MU−1,X̃,Y d (resp. M−1

U,Y,X = MU−1,Xd,Ỹ ) for all dual frame

Y d (resp. Xd) of Y (resp. X). Furthermore, the proposition also holds in the
opposite side if E = `2(A, I).

Proof. Suppose that X is equivalent to {TY Uδi}i∈I. So there exists an invert-
ible operator W in L(E) such that TY Uδi = Wxi for every i ∈ I. Since

MU,Y,X(x) = TY UT
∗
X(x) =

∑
i∈I
〈x, xi〉TY Uδi =

∑
i∈I
〈x, xi〉Wxi = WSX(x),

so MU,Y,X is invertible. Moreover, by the fact that TXU
−1 = W−1TY =

TW−1Y , we have

MU−1,X̃,Y d = TX̃U
−1T ∗Y d = S−1X TXU

−1T ∗Y d = S−1X TW−1Y T
∗
Y d = (WSX)−1.

Conversely, for E = `2(A, I), if MU,Y,X is invertible and M−1
U,Y,X = MU−1,X̃,Y d

for all dual frame Y d of Y , then Proposition 4.4 implies that (ΓU,Y,X)
∗
T ∗Y d = 0.

Now, with an argument similar to Remark 4.5, one can conclude that ΓU,Y,X =
0. Therefore, by the equation (4.11), we have

U∗T ∗Y = T ∗XS
−1
X M∗

U,Y,X .
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Hence, by taking the adjoint, we obtain

TY Uδi = MU,Y,XS
−1
X TXδi = MU,Y,XS

−1
X xi.

The second part is similar. �

Now, we extend the results of Proposition 4.1 to non-Bessel sequences. First,
consider the following definition.

Definition. Let X = {xi}i∈I be a standard frame for Hilbert A-module E.
The sequence Y = {yi}i∈I with elements from E is called

(i) an analysis pseudo-dual (in short, a-pseudo-dual) of X, if for every
x ∈ E,

(4.14) x =
∑
i∈I
〈x, yi〉xi;

(ii) a synthesis pseudo-dual (in short, s-pseudo-dual) of X, if for every
x ∈ E,

(4.15) x =
∑
i∈I
〈x, xi〉 yi.

Remark 4.7. In [17, Proposition 3.9], it was shown that if X = {xi}i∈I and
Y = {yi}i∈I are two standard Bessel sequences for Hilbert A-module E and for
every x ∈ E, x =

∑
i∈I 〈x, yi〉xi, then both X and Y are standard frames of E

and x =
∑
i∈I 〈x, xi〉 yi holds for any x ∈ E.

Consider a sequence X = {xi}i∈I in a Hilbert A-module E and define the

possibly unbounded synthesis operator TX : Dom(TX) ⊆ `2(A, I)→ E by

TX {ai}i∈I =
∑
i∈I

aixi, Dom(TX) :=

{
{ai}i∈I ∈ `

2(A, I)|
∑
i∈I

aixi is convergent

}
.

Note that the finite sequences are dense in `2(A, I) and contained in Dom(TX).
Thus, the operator TX is automatically densely defined.

The next propositions determine how to represent the inverse of an invertible
generalized multiplier for non-Bessel sequences and invertible symbol. In fol-
lowing, the synthesis operators are assumed to be closed operators. Moreover,
{δi}i∈I is the standard orthonormal basis of `2(A, I).

Proposition 4.8. Let X = {xi}i∈I be a standard frame for Hilbert A-module

E, Y = {yi}i∈I be a sequence with elements from E and U ∈ L(`2(A, I)) be
invertible such that Uδi ∈ Dom(TY ) for every i ∈ I. Moreover, assume that
MU,Y,X is invertible. Then, there exists a dual frame X† of X such that for

any a-pseudo-duals Y ad of Y , M−1
U,Y,X = MU−1,X†,Y ad .
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Proof. Denote MU,Y,X = M. Consider the sequence X† =
{
M−1TY Uδi

}
i∈I.

Note that for every a ∈ `2(A, I), we have

TX†U
−1a =

∑
i∈I

〈
U−1a, δi

〉
M−1TY Uδi

= M−1TY U
∑
i∈I

〈
U−1a, δi

〉
δi

= M−1TY (a).

Hence

MU−1,X†,Y ad(x) = TX†U
−1T ∗Y ad(x)

= M−1TY
{〈
x, yadi

〉}
i∈I

= M−1

(∑
i∈I

〈
x, yadi

〉
yi

)
= M−1(x).

�

Proposition 4.9. Let Y = {yi}i∈I be a standard frame for Hilbert A-module

E, X = {xi}i∈I be a sequence with elements from E and U ∈ L(`2(A, I)) be
invertible such that U∗δi ∈ Dom(TX) for every i ∈ I. Moreover, assume that
MU,Y,X is invertible. Then, there exists a dual frame Y † of Y such that for

any s-pseudo-duals Xsd of X, M−1
U,Y,X = MU−1,Xsd,Y † .

Proof. Put Y † =
{(

M−1)∗ TXU∗δi}
i∈I

. Then, for every x ∈ E

(
U−1T ∗Y †(x)

)
i

=
〈
U−1

{〈
x,
(
M−1)∗ TXU∗δi〉} , δi〉

=
∑
i∈I

〈
UT ∗XM−1(x), δi

〉 〈
δi, (U

−1)∗δi
〉

=
〈
UT ∗XM−1(x),

(
U−1

)∗
δi

〉
=
〈
M−1(x), TXδi

〉
=
〈
x,
(
M−1)∗ xi〉 .

Therefore,

MU−1,Xsd,Y †(x) = TXsdU
−1T ∗Y †(x)

= TXsd
{〈
x,
(
M−1)∗ xi〉}

i∈I

=
∑
i∈I

〈
M−1(x), xi

〉
xsdi = M−1(x).

�
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